Skip to main content
Log in

On the Decomposition of Solutions: From Fractional Diffusion to Fractional Laplacian

  • Research Paper
  • Published:
Fractional Calculus and Applied Analysis Aims and scope Submit manuscript

Abstract

This paper investigates the structure of solutions to the BVP of a class of fractional ordinary differential equations involving both fractional derivatives (R-L or Caputo) and fractional Laplacian with variable coefficients. This family of equations generalize the usual fractional diffusion equation and fractional Laplace equation.

We provide a deep insight to the structure of the solutions shared by this family of equations. The specific decomposition of the solution is obtained, which consists of the “good” part and the “bad” part that precisely control the regularity and singularity, respectively. Other associated properties of the solution will be characterized as well.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S.S. Bayin, On the consistency of the solutions of the space fractional Schrödinger equation. J. Math. Phys. 53, No 4 (2012), 1–9; DOI: 10.1063/1.4705268.

    Article  MATH  Google Scholar 

  2. S.S. Bayin, Comment on “On the consistency of the solutions of the space fractional Schrödinger equation” [J. Math. Phys. 53, 042105 (2012)] [MR2953264]. J. Math. Phys. 54, No 7 (2013), 1–4; DOI: 10.1063/1.4816007

    Article  MATH  Google Scholar 

  3. D.A. Benson, R. Schumer, M.M. Meerschaert, and S.W. Wheatcraft, Fractional dispersion, Lévy motion, and the MADE tracer tests. Transp. Porous Media 42, No 1-2 (2001), 211–240; DOI: 10.1023/A:1006733002131.

    Article  MathSciNet  Google Scholar 

  4. D. A. Benson, S. W. Wheatcraft, and M. M. Meerschaert, The fractional-order governing equation of Lévy motion. Water Resources Research 36, No 6 (2000), 1413–1423.

    Article  Google Scholar 

  5. R.M. Blumenthal and R.K. Getoor, The asymptotic distribution of the eigenvalues for a class of Markov operators. Pacific J. Math. 9 (1959), 399–408.

    Article  MathSciNet  MATH  Google Scholar 

  6. A. Buades, B. Coll, and J.M. Morel, Image denoising methods. A new nonlocal principle. SIAM Rev. 52 (2010), 113–147; DOI: 10.1137/090773908.

    Article  MathSciNet  MATH  Google Scholar 

  7. B. Carmichael, H. Babahosseini, S. Mahmoodi, and M. Agah, The fractional viscoelastic response of human breast tissue cells. Physical Biology 12, No 4 (2015).

    Google Scholar 

  8. H. Chen and H. Wang, Numerical simulation for conservative fractional diffusion equations by an expanded mixed formulation. J. Comput. Appl. Math. 296 (2016), 480–498; DOI: 10.1016/j.cam.2015.09.022.

    Article  MathSciNet  MATH  Google Scholar 

  9. Z.-Q. Chen, M.M. Meerschaert, and E. Nane, Space-time fractional diffusion on bounded domains. J. Math. Anal. Appl. 393, No 2 (2012), 479–488; DOI: 10.1016/j.jmaa.2012.04.032.

    Article  MathSciNet  MATH  Google Scholar 

  10. Z.-Q. Chen, and R. Song, Two-sided eigenvalue estimates for subordinate processes in domains. J. Funct. Anal. 226, No 1 (2005), 90–113; DOI: 10.1016/j.jfa.2005.05.004.

    Article  MathSciNet  MATH  Google Scholar 

  11. Z.-Q. Chen, and R. Song, Continuity of eigenvalues of subordinate processes in domains. Math. Z. 252, No 1 (2006), 71–89; DOI: 10.1007/s00209-005-0845-2.

    Article  MathSciNet  MATH  Google Scholar 

  12. D. Del Castillo-Negrete, B. Carreras, and V. Lynch, Fractional diffusion in plasma turbulence. Physics of Plasmas 11, No 8 (2004), 3854–3864.

    Article  Google Scholar 

  13. E. Di Nezza, G. Palatucci, and E. Valdinoci, Hitchhiker’s guide to the fractional Sobolev spaces. Bull. Sci. Math. 136, No 15 (2012), 521–573; DOI: 10.1016/j.bulsci.2011.12.004.

    Article  MathSciNet  MATH  Google Scholar 

  14. B.P. Epps and B. Cushman-Roisin, Turbulence modeling via the fractional Laplacian. arXiv:1803.05286.

  15. V.J. Ervin, Regularity of the solution to fractional diffusion, advection, reaction equations in weighted Sobolev spaces. J. Differential Equations 278 (2021), 294–325; DOI: 10.1016/j.jde.2020.12.034.

    Article  MathSciNet  MATH  Google Scholar 

  16. V.J. Ervin, N. Heuer, and J.P. Roop, Regularity of the solution to 1-D fractional order diffusion equations. Math. Comp. 87, No 313 (2018), 2273–2294; DOI: 10.1090/mcom/3295.

    Article  MathSciNet  MATH  Google Scholar 

  17. V.J. Ervin and J.P. Roop, Variational formulation for the stationary fractional advection dispersion equation. Numer. Methods Partial Differ. Equ. 22, No 3 (2006), 558–576.

    Article  MathSciNet  MATH  Google Scholar 

  18. V.J. Ervin and J.P. Roop, Variational solution of fractional advection dispersion equations on bounded domains in ℝd. Numer. Methods Partial Differential Equations 23, No 2 (2007), 256–281; DOI: 10.1002/num.20169.

    Article  MathSciNet  MATH  Google Scholar 

  19. L.C. Evans, Partial Differential Equations. American Mathematical Society, Providence, RI (2010).

    MATH  Google Scholar 

  20. G.B. Folland, Real Analysis. John Wiley & Sons, Inc., New York (1999).

    MATH  Google Scholar 

  21. F.D. Gakhov, Boundary Value Problems. Transl. Ed. by I.N. Sneddon. Pergamon Press, Oxford-New York-Paris; Addison-Wesley Publishing Co., Inc., Reading, Mass.-London (1999).

  22. G. Gilboa and S. Osher, Nonlocal operators with applications to image processing. Multiscale Model. Simul. 7, No 3 (2008), 1005–1028; DOI: 10.1137/070698592.

    Article  MathSciNet  MATH  Google Scholar 

  23. V. Ginting and Y. Li, On the fractional diffusion-advection-reaction equation in ℝ. Fract. Calc. Appl. Anal. 22, No 4 (2019), 1039–1062; DOI: 10.1515/fca-2019-0055; https://www.degruyter.com/journal/key/fca/22/4/html.

    Article  MathSciNet  MATH  Google Scholar 

  24. G. Grubb, Distributions and Operators. Springer, New York (2009).

    MATH  Google Scholar 

  25. Z. Hao, G. Lin, and Z. Zhang, Error estimates of a spectral Petrov-Galerkin method for two-sided fractional reaction-diffusion equations. Appl. Math. Comput. 374 (2020), 1–13; DOI: 10.1016/j.amc.2020.125045.

    MathSciNet  MATH  Google Scholar 

  26. Z. Hao and Z. Zhang, Optimal regularity and error estimates of a spectral Galerkin method for fractional advection-diffusion-reaction equations. SIAM J. Numer. Anal. 58, No 1 (2020), 211–233; DOI: 10.1137/18M1234679.

    Article  MathSciNet  MATH  Google Scholar 

  27. Y. Hatano and N. Hatano, Dispersive transport of ions in column experiments: An explanation of long-tailed profiles. Water Resources Research 34, No 5 (1998), 1027–1033.

    Article  Google Scholar 

  28. F. Höfling and T. Franosch, Anomalous transport in the crowded world of biological cells. Rep. Progr. Phys. 76, No 4 (2013), 1–50; DOI: 10.1088/0034-4885/76/4/046602.

    Article  MathSciNet  Google Scholar 

  29. M. Jeng, S.-L.-Y. Xu, E. Hawkins, and J.M. Schwarz, On the nonlocality of the fractional Schrödinger equation. J. Math. Phys. 51, No 6, 062102 (2010), 1–6; DOI: 10.1063/1.3430552.

    Article  MATH  Google Scholar 

  30. B. Jin, R. Lazarov, X. Lu, and Z. Zhou, A simple finite element method for boundary value problems with a Riemann-Liouville derivative. J. Comput. Appl. Math. 293 (2016), 94–111; DOI: 10.1016/j.cam.2015.02.058.

    Article  MathSciNet  MATH  Google Scholar 

  31. B. Jin, R. Lazarov, X. Lu, J. Pasciak, and W. Rundell, Variational formulation of problems involving fractional order differential operators. Math. Comp. 84, No 296 (2015), 2665–2700; DOI: 10.1090/mcom/2960.

    Article  MathSciNet  MATH  Google Scholar 

  32. A.A. Kilbas, H.M. Srivastava, and J.J. Trujillo, Theory and Applications of Fractional Differential Equations. Elsevier Science B.V., Amsterdam (2006).

    MATH  Google Scholar 

  33. M. Kwaśnicki, Eigenvalues of the fractional Laplace operator in the interval. J. Funct. Anal. 262, No 5 (2012), 2379–2402; DOI: 10.1016/j.jfa.2011.12.004.

    Article  MathSciNet  MATH  Google Scholar 

  34. M. Kwaśnicki, Ten equivalent definitions of the fractional Laplace operator. Fract. Calc. Appl. Anal. 20, No 1 (2017), 7–51; DOI: 10.1515/fca-2017-0002; https://www.degruyter.com/journal/key/fca/20/1/html.

    Article  MathSciNet  MATH  Google Scholar 

  35. N.S. Landkof, Foundations of Modern Potential Theory. Translated from the Russian by A. P. Doohovskoy, Die Grundlehren der mathematischen Wissenschaften, Band 180, Springer-Verlag, New York-Heidelberg (1972).

  36. Y. Li, Integral representation bound of the true solution to the BVP of double-sided fractional diffusion advection reaction equation. Rend. Circ. Mat. Palermo, II. Ser (2021), DOI: 10.1007/s12215-021-00592-z.

    Google Scholar 

  37. Y. Li, Raising the regularity of generalized Abel equations in fractional Sobolev spaces with homogeneous boundary conditions. J. Integral Equations Applications (In press).

  38. Y. Li, On Fractional Differential Equations and Related Questions, Thesis (Ph.D.) - University of Wyoming. ProQuest LLC, Ann Arbor, MI (2019).

    Google Scholar 

  39. Y. Li, A note on generalized Abel equations with constant coefficients. Rocky Mountain J. Math. (In press).

  40. Y. Li, On the skewed fractional diffusion advection reaction equation on the interval. arXiv:2005.04405.

  41. Y. Li, H. Chen, and H. Wang, A mixed-type Galerkin variational formulation and fast algorithms for variable-coefficient fractional diffusion equations. Math. Methods Appl. Sci. 40, No 14 (2017), 5018–5034; DOI: 10.1002/mma.4367.

    Article  MathSciNet  MATH  Google Scholar 

  42. A. Lischke, G. Pang, M. Gulian, and et al., What is the fractional Laplacian? A comparative review with new results. J. Comput. Phys. 404, 109009 (2020), 1–62; DOI: 10.1016/j.jcp.2019.109009.

    Article  MathSciNet  MATH  Google Scholar 

  43. Y. Luchko, Fractional Schrödinger equation for a particle moving in a potential well. J. Math. Phys. 54, No 1, 012111 (2013), 1–10; DOI: 10.1063/1.4777472.

    Article  MathSciNet  MATH  Google Scholar 

  44. F. Mainardi, Fractional calculus: some basic problems in continuum and statistical mechanics. In: Fractals and Fractional Calculus in Continuum Mechanics (Udine, 1996) 378, Springer, Vienna (1997), 291–348; DOI: 10.1007/978-3-7091-2664-6_7.

    Article  MathSciNet  Google Scholar 

  45. F. Mainardi, Fractional Calculus and Waves in Linear Viscoelasticity (An Introduction to Mathematical Models). Worls Sci. - Imperial College Press, London (2010).

    MATH  Google Scholar 

  46. Z. Mao and G.E. Karniadakis, A spectral method (of exponential convergence) for singular solutions of the diffusion equation with general two-sided fractional derivative. SIAM J. Numer. Anal. 56, No 1 (2018), 24–49; DOI: 10.1137/16M1103622.

    Article  MathSciNet  MATH  Google Scholar 

  47. B.M. McCay, M.N.L. Narasimhan, Theory of nonlocal electromagnetic fluids. Arch. Mech. (Arch. Mech. Stos.) 33, No 3 (1981), 365–384.

    MathSciNet  MATH  Google Scholar 

  48. R. Metzler and J. Klafter, The random walk’s guide to anomalous diffusion: a fractional dynamics approach. Phys. Rep. 339, No 1 (2000), 1–77; DOI: 10.1016/S0370-1573(00)00070-3.

    Article  MathSciNet  MATH  Google Scholar 

  49. X. Ros-Oton, Nonlocal elliptic equations in bounded domains: a survey. Publ. Mat. 60, No 1 (2016), 3–26.

    Article  MathSciNet  MATH  Google Scholar 

  50. X. Ros-Oton and J. Serra, The Dirichlet problem for the fractional Laplacian: regularity up to the boundary. J. Math. Pures Appl. (9) 101, No 3 (2014), 275–302; DOI: 10.1016/j.matpur.2013.06.003.

    Article  MathSciNet  MATH  Google Scholar 

  51. S. G. Samko, A new approach to the inversion of the Riesz potential operator. Fract. Calc. Appl. Anal. 1, No 3 (1998), 225–245.

    MathSciNet  MATH  Google Scholar 

  52. S.G. Samko, A.A. Kilbas, O.I. Marichev, Fractional Integrals and Derivatives. Gordon and Breach Science Publishers, Yverdon (1993).

    MATH  Google Scholar 

  53. K. Saĭevand and K. Pichagkhi, Reanalysis of an open problem associated with the fractional Schrödinger equation. Teoret. Mat. Fiz. 192, No 1 (2017), 103–114; DOI: 10.4213/tmf9224.

    MathSciNet  Google Scholar 

  54. M.F. Shlesinger, B.J. West and J. Klafter, Lévy dynamics of enhanced diffusion: application to turbulence. Phys. Rev. Lett. 58, No 11 (1987), 1100–1103; DOI: 10.1103/PhysRevLett.58.1100.

    Article  MathSciNet  Google Scholar 

  55. D.W. Sims, E.J. Southford, N.E. Humphries, G.C. Hays, C.J. Bradshaw, J.W. Pitchford, A. James, M.Z. Ahmed, A.S. Brierley, M.A. Hindell, et al., Scaling laws of marine predator search behaviour. Nature 451, No 7182 (2008), 1098–1102.

    Article  Google Scholar 

  56. E.M. Stein, Singular Integrals and Differentiability Properties of Functions. Princeton Mathematical Ser. No. 30, Princeton University Press, Princeton, N.J. (1970).

    MATH  Google Scholar 

  57. M. Stynes, Too much regularity may force too much uniqueness. Fract. Calc. Appl. Anal. 19, No 6 (2016), 1554–1562; DOI: 10.1515/fca-2016-0080; https://www.degruyter.com/journal/key/fca/19/6/html.

    Article  MathSciNet  MATH  Google Scholar 

  58. L. Tartar, An Introduction to Sobolev Spaces and Interpolation Spaces. Springer, Berlin; UMI, Bologna (2007).

    MATH  Google Scholar 

  59. H. Wang and D. Yang, Wellposedness of variable-coefficient conservative fractional elliptic differential equations. SIAM J. Numer. Anal. 51, No 2 (2013), 1088–1107; DOI: 10.1137/120892295.

    Article  MathSciNet  MATH  Google Scholar 

  60. H. Wang, D. Yang, and S. Zhu, Accuracy of finite element methods for boundary-value problems of steady-state fractional diffusion equations. J. Sci. Comput. 70, No 1 (2017), 429–449; DOI: 10.1007/s10915-016-0196-7.

    Article  MathSciNet  MATH  Google Scholar 

  61. H. Wang and X. Zhang, A high-accuracy preserving spectral Galerkin method for the Dirichlet boundary-value problem of variable-coefficient conservative fractional diffusion equations. J. Comput. Phys. 281 (2017), 67–81; DOI: 10.1016/j.jcp.2014.10.018.

    Article  MathSciNet  MATH  Google Scholar 

  62. G.M. Zaslavsky, D. Stevens, and H. Weitzner, Self-similar transport in incomplete chaos. Phys. Rev. E (3) 48, No 3 (1993), 1683–1694; DOI: 10.1103/PhysRevE.48.1683.

    Article  MathSciNet  Google Scholar 

  63. Y. Zhang, D.A. Benson, M.M. Meerschaert, and E.M. LaBolle, Space-fractional advection-dispersion equations with variable parameters: Diverse formulas, numerical solutions, and application to the Macrodispersion Experiment site data. Water Resources Research 43, No 5 (2007).

    Google Scholar 

  64. Z. Zhang, Error estimates of spectral Galerkin methods for a linear fractional reaction-diffusion equation. J. Sci. Comput. 78, No 2 (2019), 1087–1110; DOI: 10.1007/s10915-018-0800-0.

    Article  MathSciNet  MATH  Google Scholar 

  65. X. Zheng, V. Ervin, and H. Wang, Optimal Petrov-Galerkin spectral approximation method for the fractional diffusion, advection, reaction equation on a bounded interval. J. Sci. Comput. 86, No 3 (2021), DOI: 10.1007/s10915-020-01366-y.

    Google Scholar 

  66. X. Zheng, V. Ervin, and H. Wang, Wellposedness of the two-sided variable coefficient Caputo flux fractional diffusion equation and error estimate of its spectral approximation. Appl. Numer. Math. 153 (2019), 234–247; DOI: 10.1016/j.apnum.2020.02.019.

    Article  MathSciNet  MATH  Google Scholar 

  67. X. Zheng, V. Ervin, and H. Wang, Spectral approximation of a variable coefficient fractional diffusion equation in one space dimension. Appl. Math. Comput. 361 (2019), 98–111; DOI: 10.1016/j.amc.2019.05.017.

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yulong Li.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Y. On the Decomposition of Solutions: From Fractional Diffusion to Fractional Laplacian. Fract Calc Appl Anal 24, 1571–1600 (2021). https://doi.org/10.1515/fca-2021-0066

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1515/fca-2021-0066

MSC 2010

Key Words and Phrases

Navigation