Skip to main content
Log in

Properties of the Set of Admissible “State Control” Pair for a Class of Fractional Semilinear Evolution Control Systems

  • Research Paper
  • Published:
Fractional Calculus and Applied Analysis Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

In this paper, we discuss a class of Caputo fractional evolution equations on Banach space with feedback control constraint whose value is non-convex closed in the control space. First, we prove the existence of solutions for the system with feedback control whose values are the extreme points of the convexified constraint that belongs to the original one. Secondly, we study the topological properties of the sets of admissible “state-control” pair for the original system with various feedback control constraints and the relations between them. Moreover, we obtain necessary and sufficient conditions for the solution set of original systems to be closed. In the end, an example is given to illustrate the applications of our main results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J.P. Aubin, A. Cellina, Differential Inclusions: Set-Valued Maps and Viability Theory, Springer-Verlag, Berlin-New York-Tokyo, (1984)

    Book  MATH  Google Scholar 

  2. M.J. Bin, Time optimal control for semilinear fractional evolution feedback control systems. Optimization 68 No 4, (2019), 819–832.

    Article  MathSciNet  MATH  Google Scholar 

  3. M.J. Bin, Z.H. Liu, Relaxation in nonconvex optimal control for nonlinear evolution hemivariational inequalities. Nonlinear Anal.: Real World Appl 50, (2019), 613–632.

    Article  MathSciNet  MATH  Google Scholar 

  4. M.J. Bin, Z.H. Liu, On the “bang-bang” principle for nonlinear evolution hemivariational inequalities control systems. J. Math. Anal. Appl 480 No 1, (2019) # 123364

    Google Scholar 

  5. A. Bressan, Differential inclusions with non-closed, non-convex right hand side. Diff. Integral Equat 3, (1990), 633–638.

    MATH  Google Scholar 

  6. K. Deimling, Multivalued Differential Equations, De Gruyter, Berlin, (1992)

    Book  MATH  Google Scholar 

  7. A. Fryszkowski, Continuous selections for a class of nonconvex multivalued maps. Studia Math 76, (1983), 163–174.

    Article  MathSciNet  MATH  Google Scholar 

  8. A.A. Kilbas, H.M. Srivastava, J.J. Trujillo, Theory and Applications of Fractional Differential Equations, Elsevier B.V, Amsterdam, (2006)

    MATH  Google Scholar 

  9. F. Hiai, H. Umegaki, Integrals, conditional expectations and martingales of multivalued functions. J. Multivariate Anal 7, (1977), 149–182.

    Article  MathSciNet  MATH  Google Scholar 

  10. C.J. Himmelberg, Measurable relations. Fund. Math 87, (1975), 53–72.

    Article  MathSciNet  MATH  Google Scholar 

  11. S.C. Hu, N.S. Papageorgiou, Handbook of Multivalued Analysis: Volume I. Theory, Kluwer Academic Publ, Dordrecht-Boston-London, (1997)

    Book  MATH  Google Scholar 

  12. J.H. Lightbourne, S.M. Rankin, A partial functional differential equation of Sobolev type. J. Math. Anal. Appl 93, (1983), 328–337.

    Article  MathSciNet  MATH  Google Scholar 

  13. X.W. Li, Z.H. Liu, The solvability and optimal controls of impulsive fractional semilinear differential equations. Taiwanese J. Math 19 No 2, (2015), 433–453.

    Article  MathSciNet  MATH  Google Scholar 

  14. X.W. Li, Z.H. Liu, J. Li, C. Tisdell, Existence and controllability for nonlinear fractional control systems with damping in Hilbert spaces. Acta Math. Sci 39 No 1, (2019), 229–242.

    Article  MathSciNet  Google Scholar 

  15. X.W. Li, Z.H. Liu, Sensitivity analysis of optimal control problems described by differential hemivariational inequalities. SIAM J. Control Optim 56 No 5, (2018), 3569–3597.

    Article  MathSciNet  MATH  Google Scholar 

  16. X.Y Liu, Z.H. Liu, X. Fu, Relaxation in nonconvex optimal control problems described by fractional differential equations. J. Math. Anal. Appl 409 No 1, (2014), 446–458.

    Article  MathSciNet  MATH  Google Scholar 

  17. X.Y. Liu, Z.H. Liu, On the “bang-bang” principle for a class of fractional semilinear evolution inclusions. Proc. Royal Soc. Edinburgh 144A No 2, (2014), 333–349.

    Article  MathSciNet  MATH  Google Scholar 

  18. Z.H. Liu, M.J. Bin, Approximate controllability of impulsive Riemann-Liouville fractional equations in Banach spaces. J. Integral Equat. Appl 26 No 4, (2014), 527–551.

    Article  MathSciNet  MATH  Google Scholar 

  19. Z.H. Liu, X.W. Li, Approximate controllability of fractional evolution systems with Riemann-Liouville fractional derivatives. SIAM J. Control Optim 53 No 4, (2015), 1920–1933.

    Article  MathSciNet  MATH  Google Scholar 

  20. Z.H. Liu, D. Motreanu, S.D. Zeng, Generalized penalty and regularization method for differential variational - hemivariational inequalities. SIAM J. Optim 31 No 2, (2021), 1158–1183.

    Article  MathSciNet  MATH  Google Scholar 

  21. Y.J. Liu, Z.H. Liu, C.F. Wen, Existence of solutions for space-fractional parabolic hemivariational inequalities. Discrete and Continuous Dynamical Systems Ser. B 24 No 3, (2019), 1297–1307.

    Article  MathSciNet  MATH  Google Scholar 

  22. K.S. Miller, B. Ross, An Introduction to the Fractional Calculus and Differential Equations, John Wiley, New York, (1993)

    MATH  Google Scholar 

  23. N.S. Papageorgiou, On the “bang-bang” principle for nonlinear evolution inclusions. Aequationes Math 45, (1993), 267–280.

    Article  MathSciNet  MATH  Google Scholar 

  24. I. Podlubny, Fractional Differential Equations, Academic Press, San Diego, (1999)

    MATH  Google Scholar 

  25. H.L. Royden, Real Analysis, Prentice-Hall, Englewood Cliffs, New Jersey, (1988)

    MATH  Google Scholar 

  26. S.G. Samko, A.A. Kilbas, O.I. Marichev, Fractional Integral and Derivatives, Theory and Applications, Gordon and Breach, Yverdon, (1993)

    MATH  Google Scholar 

  27. N. Sukavanam, S. Kumar, Approximate controllability of fractional order semilinear delay systems. J. Optim. Theory Appl 151, (2011), 373–384.

    Article  MathSciNet  MATH  Google Scholar 

  28. S.I. Suslov, Nonlinear bang-bang principle in Rn. Mat. Zametki 49 No 5, (1991), 110–116 English transl.: Math. Notes 49 (1991), 518–523

    MathSciNet  MATH  Google Scholar 

  29. M.H.M. Rashid, A. Al-Omari, Local and global existence of mild solutions for impulsive fractional semilinear integro-differential equation. Commun. Nonlinear Sci. Numer. Simul 16 No 9, (2011), 3493–3503.

    Article  MathSciNet  MATH  Google Scholar 

  30. A.A. Tolstonogov, Extremal selections of multivalued mappings and the ‘bang-bang’ principle for evolution inclusions. Dokl. Akad. Nauk. SSSR 317, (1991), 589–593 English transl.: Soviet Math. Dokl. 43 (1991), 481–485

    MATH  Google Scholar 

  31. A.A. Tolstonogov, Relaxation in non-convex control problems described by first-order evolution equations. Math. Sb 190 No 11, (1999), 135–160 English transl.: Sb. Math., 190 (1999), 1689–1714

    Article  MathSciNet  MATH  Google Scholar 

  32. A.A. Tolstonogov, D.A. Tolstonogov, On the “bang-bang” principle for nonlinear evolution inclusions. Nonlinear Differ. Equa. Appl 6, (1999), 101–118.

    Article  MathSciNet  MATH  Google Scholar 

  33. A.A. Tolstonogov, D.A. Tolstonogov, Lp-continuous extreme selectors of multifunctions with decomposable values: Existence theorems. Set-Valued Anal 4, (1996), 173–203.

    Article  MathSciNet  MATH  Google Scholar 

  34. A.A. Tolstonogov, D.A. Tolstonogov, Lp-continuous extreme selectors of multifunctions with decomposable values: Relaxation theorems. Set-Valued Anal 4, (1996), 237–269.

    Article  MathSciNet  MATH  Google Scholar 

  35. A.A. Tolstonogov, Properties of the set of admissible “state-control” pairs for first-order evolution control systems. Izvestiya: Math 65 No 3, (2001), 617–640.

    Article  MathSciNet  MATH  Google Scholar 

  36. A.A. Tolstonogov, Relaxation in nonconvex optimal control problems with subdifferential operators. J. Math. Sci 140 No 6, (2007), 850–872.

    Article  MathSciNet  MATH  Google Scholar 

  37. A.A. Tolstonogov, Relaxation in control systems of subdifferential type. Izvestiya Math 70 No 1, (2006), 121–152.

    Article  MathSciNet  MATH  Google Scholar 

  38. H.P. Ye, J.M. Gao, Y.S. Ding, A generalized Gronwall inequality and its application to a fractional differential equation. J. Math. Anal. Appl 328, (2007), 1075–1081.

    Article  MathSciNet  MATH  Google Scholar 

  39. Q.J. Zhou, On the solution set of differential inclusions in Banach space. J. Diff. Equ 93, (1991), 213–237.

    Article  MathSciNet  Google Scholar 

  40. Y. Zhou, F. Jiao, Existence of mild solutions for fractional neutral evolution equations. Comput. Math. Appl 59, (2010), 1063–1077.

    Article  MathSciNet  MATH  Google Scholar 

  41. J.R. Wang, Y. Zhou, M. Medved, On the solvability and optimal controls of fractional integro-differential evolution systems. J. Optim. Theory Appl 152, (2012), 31–50.

    Article  MathSciNet  MATH  Google Scholar 

  42. Y. Zhou, L. Zhang, X.H. Shen, Existence of mild solutions for fractional evolution equations. J. Integral Equat. Appl 25 No 4, (2013), 557–586.

    Article  MathSciNet  MATH  Google Scholar 

  43. J. Zhu, On the solution set of differential inclusions in Banach space. J. Diff. Equat 93 No 2, (1991), 213–237.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maojun Bin.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bin, M., Deng, H., Li, Y. et al. Properties of the Set of Admissible “State Control” Pair for a Class of Fractional Semilinear Evolution Control Systems. Fract Calc Appl Anal 24, 1275–1298 (2021). https://doi.org/10.1515/fca-2021-0055

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1515/fca-2021-0055

MSC 2010

Key Words and Phrases

Navigation