Skip to main content
Log in

On Riesz Derivative

  • Research Paper
  • Published:
Fractional Calculus and Applied Analysis Aims and scope Submit manuscript

Abstract

This paper focuses on studying Riesz derivative. An interesting investigation on properties of Riesz derivative in one dimension indicates that it is distinct from other fractional derivatives such as Riemann-Liouville derivative and Caputo derivative. In the existing literatures, Riesz derivative is commonly considered as a proxy for fractional Laplacian on ℝ. We show the equivalence between Riesz derivative and fractional Laplacian on ℝn with n ≥ 1 in details.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. S.Ş Bayın, Definition of the Riesz derivative and its application to space fractional quantum mechanics. J. Math. Phys. 57, No 12 (2016), Art. ID 123501; DOI: 10.1063/1.4968819.

  2. D.A. Benson, S.W. Wheatcraft, M.M. Meerschaert, Application of a fractional advection-dispersion equation. Water Resour. Res. 36, No 6 (2000), 1403–1412; DOI: 10.1029/2000WR900031.

    Article  Google Scholar 

  3. D.A. Benson, The Fractional Advection-Dispersion Equation: Development and Application. Doctoral dissertation, University of Nevada, USA, 1998.

    Google Scholar 

  4. J.H. Cushman, Dynamics of Fluids in Hierarchical Porous Media. Academic Press, London (1990).

    Google Scholar 

  5. H.F. Ding, C.P. Li, Fractional-compact numerical algorithms for Riesz spatial fractional reaction-dispersion equations. Fract. Calc. Appl. Anal. 20, No 3 (2017), 722–764; DOI: 10.1515/fca-2017-0038; https://www.degruyter.com/view/j/fca.2017.20.issue-3/issue-files/fca.2017.20.issue-3.xml.

    Article  MathSciNet  Google Scholar 

  6. H.F. Ding, C.P. Li, High-order algorithms for Riesz derivaive and their applications (III). Fract. Calc. Appl. Anal. 19, No 1 (2016), 19–55; DOI: 10.1515/fca-2016-0003; https://www.degruyter.com/view/j/fca.2016.19.issue-1/issue-files/fca.2016.19.issue-1.xml.

    Article  MathSciNet  Google Scholar 

  7. H.F. Ding, C.P. Li, High-order algorithms for Riesz derivative and their applications (V). Numer. Meth. Part. Diff. Equ. 33, No 5 (2017), 1754–1794; DOI: 10.1002/num.22169.

    Article  MathSciNet  Google Scholar 

  8. H.F. Ding, C.P. Li, High-order numerical algorithms for Riesz derivatives via constructing new generating functions. J. Sci. Comput. 71, No 2 (2017), 759–784; DOI: 10.1007/s10915-016-0317-3.

    Article  MathSciNet  Google Scholar 

  9. H.F. Ding, C.P. Li, Y.Q. Chen, High-order algorithms for Riesz derivaive and their applications (I). Abstr. Appl. Anal. 2014 (2014), Art. ID 653797; DOI: 10.1155/2014/653797.

  10. H.F. Ding, C.P. Li, Y.Q. Chen, High-order algorithms for Riesz derivaive and their applications (II). J. Comput. Phys. 293 (2015), 218–237; DOI: 10.1016/j.jcp.2014.06.007.

    Article  MathSciNet  Google Scholar 

  11. I.S. Gradshteyn, I.M. Ryzhik, Tables of Integrals, Series, and Products. Academic Press, New York (1980).

    MATH  Google Scholar 

  12. A.A. Kilbas, H.M. Srivastava, J.J. Trujillo, Theory and Applications of Fractional Differential Equations. Elsevier, Amsterdam (2006).

    MATH  Google Scholar 

  13. M. Kwaśnicki, Ten equivalent definitions of the fractional Laplace operator. Fract. Calc. Appl. Anal. 20, No 1 (2017), 7–51; DOI: 10.1515/fca-2017-0002; https://www.degruyter.com/view/j/fca.2017.20.issue-1/issue-files/fca.2017.20.issue-1.xml.

    Article  MathSciNet  Google Scholar 

  14. C.P. Li, W.H. Deng, Remarks on fractional derivatives. Appl. Math. Comput. 187, No 2 (2007), 777–784; DOI: 10.1016/j.amc.2006.08.163.

    MathSciNet  MATH  Google Scholar 

  15. C.P. Li, Q. Yi, J. Kurths, Fractional convection. J. Comput. Nonlinear Dynam. 13, No 1 (2017), Art. ID 011004; DOI: 10.1115/1.4037414.

  16. C.P. Li, Q. Yi, Modeling and computing of fractional convection equation. Commun. Appl. Math. Comput., In Press; DOI: 10.1007/s42967-019-00019-8.

  17. C.P. Li, F.H. Zeng, Numerical Methods for Fractional Calculus. CRC Press, Boca Raton, USA (2015).

    Book  Google Scholar 

  18. C.P. Li, Z.G. Zhao, Introduction to fractional integrability and differentiability. Eur. Phys. J. Spec. Top. 193, No (2011), 5–26; DOI: 10.1140/epjst/e2011-01378-2.

    Article  Google Scholar 

  19. R.L. Magin, O. Abdullah, D. Baleanu, X.J. Zhou, Anomalous diffusion expressed through fractional order differential operators in the Bloch-Torrey equation. J. Magn. Reson. 190, No 2 (2008), 255–270; DOI: 10.1016/j.jmr.2007.11.007.

    Article  Google Scholar 

  20. B. Baeumer, D.A. Benson, M.M. Meerschaert, S.W. Wheatcraft, Subordinated advection dispersion equation for contaminant transport. Water Resour. Res. 37, No 6 (2001), 1543–1550; DOI: 10.1029/2000WR900409.

    Article  Google Scholar 

  21. K.S. Miller, B. Ross, An Introduction to the Fractional Calculus and Fractional Differential Equations. Wiley, New York (1993).

    MATH  Google Scholar 

  22. E.D. Nezza, G. Palatucci, E. Valdinoci, Hitchhiker’s guide to the fractional Sobolev spaces. Bull. Sci. Math. 136, No 5 (2012), 521–573; DOI: 10.1016/j.bulsci.2011.12.004.

    Article  MathSciNet  Google Scholar 

  23. I. Podlubny, Fractional Differential Equations. Academic Press, San Diego, USA (1999).

    MATH  Google Scholar 

  24. C. Pozrikidis, The Fractional Laplace Operator. CRC Press, Boca Raton, USA (2016).

    Book  Google Scholar 

  25. C. Ray, T.R. Ellsworth, A.J. Valocchi, C.W. Boast, An improved dual porosity model for chemical transport in macroporous soils. J. Hydrol. 193, No 1–4 (1997), 270–292; DOI: 10.1016/S0022-1694(96)03141-1.

    Article  Google Scholar 

  26. S.G. Samko, A.A. Kilbas, O.I. Marichev, Fractional Integrals and Derivatives: Theory and Applications. Gordon and Breach Sci. Publ., Amsterdam (1993).

    MATH  Google Scholar 

  27. E. Scalas, R. Gorenflo, F. Mainardi, Fractional calculus and continuous-time finance. Physica A 284, No 1–4 (2000), 376–384; DOI: 10.1016/S0378-4371(00)00255-7.

    Article  MathSciNet  Google Scholar 

  28. E.M. Stein, R. Shakarchi, Fourier Analysis. Princeton Univ. Press, New Jersey (2003).

    MATH  Google Scholar 

  29. Q. Yang, F. Liu, I. Turner, Numerical methods for fractional partial differential equations with Riesz space fractional derivatives. Appl. Math. Model. 34, No 1 (2010), 200–218; DOI: 10.1016/j.apm.2009.04.006.

    Article  MathSciNet  Google Scholar 

  30. G.M. Zaslavsky, Hamiltonian Chaos and Fractional Dynamics. Oxford Univ. Press, Oxford, USA (2005).

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Changpin Li.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cai, M., Li, C. On Riesz Derivative. FCAA 22, 287–301 (2019). https://doi.org/10.1515/fca-2019-0019

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1515/fca-2019-0019

MSC 2010

Key Words and Phrases

Navigation