Skip to main content
Log in

Frequency-Distributed Representation of Irrational Linear Systems

  • Research Paper
  • Published:
Fractional Calculus and Applied Analysis Aims and scope Submit manuscript

Abstract

The present work extends and generalizes the notion of frequency-distributed (FD) representation to a broad class of linear, stationary, continuous-time systems. On one hand, the proposed FD representation can be seen as a generalization of the diffusive representation, which is primarily utilized in the context of fractional order systems. Alternatively, it can also be seen as an extension to the Jordan canonical form, which is used as one of the main theoretical tools when analyzing finite-dimensional systems. Sufficient conditions under which FD representation can be achieved are derived. The proposed approach ensures real-valued state functions and output weights even when applied to oscillatory systems, and in a wast majority of cases manages to avoid utilization of generalized functions. Potential applications include simulation, representation theory and stability analysis, control synthesis, etc. All considerations have been illustrated by numerical examples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P.J. Antsaklis, A.N. Michel, A Linear Systems Primer. Birkhäuser (2007).

    MATH  Google Scholar 

  2. T.M. Atanacković, M. Budinčević, S. Pilipović, On a fractional distributed-order oscillator. Journal of Physics A 38, No. 30 (2005), 6703–6713; DOI: 10.1088/0305-4470/38/30/006.

    Article  MathSciNet  Google Scholar 

  3. T.M. Atanacković, S. Konjik, S. Pilipović, D. Zorica, Complex order fractional derivatives in viscoelasticity. Mechanics of Time-Dependent Materials 20, No. 2 (2016), 175–195; DOI: 10.1007/s11043-016-9290-3.

    Article  Google Scholar 

  4. T.M. Atanacković, S. Pilipović, D. Zorica, Diffusion wave equation with two fractional derivatives of different order. J. Phys. A Math. Theor. 40 (2007), 5319–5333; DOI: 10.1088/1751-8113/40/20/006.

    Article  MathSciNet  Google Scholar 

  5. R. Capponeto, S. Graziani, V. Tomasello, A. Pisano, Identification and fractional super-twisting robust control of IPMC actuators. Fract. Calc. Appl. Anal. 18, No. 6 (2015), 1358–1397; DOI: 10.1515/fca-2015-0079https://www.degruyter.com/view/j/fca.

    Article  MathSciNet  Google Scholar 

  6. R. Curtain, K. Morris, Transfer functions of distributed parameter systems: a tutorial. Automatica 45, No. 5 (2009), 1101–1116; DOI: 10.1016/j.automatica.2009.01.008.

    Article  MathSciNet  Google Scholar 

  7. R.Z. Curtain, H. Zwart, An Introduction to Infinite-Dimensional Linear Systems Theory Springer-Verlag, New York, Inc. (1995).

    Book  Google Scholar 

  8. S. Cvetićanin, D. Zorica, M.R. Rapaić, Generalized time-fractional telegrapher’s equation in transmission line modeling. Nonlinear Dynamics 88, No. 2 (2017), 1453–1472; DOI: 10.1007/s11071-016-3322-z.

    Article  Google Scholar 

  9. D. Valerio, J.S. da Costa, An Introduction to Fractional Control. IET, London, UK (2013).

    MATH  Google Scholar 

  10. G. Dauphin, D. Heleschewitz, D. Matignon, Extended diffusive representations and application to non-standard oscillators. Proc. of Mathematical Theory on Network Systems (MTNS). University of Perpignan, Perpignan, France (2000).

    Google Scholar 

  11. R.C. Dorf, R.H. Bishop, Modern Control Systems. Pearson Prentice Hall (2011).

    MATH  Google Scholar 

  12. R. Gorenflo, Y. Luchko, M. Stojanović, Fundamental solution of a distributed order time-fractional diffusion-wave equation as probability density. Fract. Calc. Appl. Anal. 16, No. 2 (2013), 297–316; DOI: 10.2478/s13540-013-0019-6https://www.degruyter.com/view/j/fca.

    Article  MathSciNet  Google Scholar 

  13. J.F. Hauer, C.J. Demeure, L.L. Scharf, Initial results in Prony analysis of power system response signals. IEEE Trans. on Power Systems 5, No. 1 (1990), 80–89; DOI: 10.1109/59.49090.

    Article  Google Scholar 

  14. Z. Jiao, Y.Q. Chen, I. Podlubny, Distributed-Order Dynamic Systems: Stability, Simulation, Applications and Perspectives. Springer (2012).

    Book  Google Scholar 

  15. T. Kailath, Linear Systems. Prentice-Hall (1980).

    MATH  Google Scholar 

  16. G. Korenev, Bessel Functions and Their Applications. CRC Press (2002).

    Book  Google Scholar 

  17. P. Lanusse, J. Sabatier, PLC implementation of a CRONE controller. Fract. Calc. Appl. Anal. 14, No. 4 (2011), 505–522; DOI: 10.2478/s13540-011-0031-7https://www.degruyter.com/view/j/fca.

    Article  Google Scholar 

  18. R.L. Magin, Fractional Calculus in Bioengineering. Begell House Publishers (2006).

    Google Scholar 

  19. F. Mainardi, Y. Luchko, G. Pagnini, The fundamental solution of the space–time fractional diffusion equation. Fract. Calc. Appl. Anal. 4, No. 2 (2001), 153–192.

    MathSciNet  MATH  Google Scholar 

  20. D. Matignon, Generalized fractional differential and difference equations: Stability properties and modeling issues. In: Proc.of Mathematical Theory of Networks and Systems, Padova, Italy, Il Poligrafo (1998), 503–506.

    Google Scholar 

  21. D. Matignon, Stability properties for generalized fractional differential systems. In: Proc. of ESAIM Fractional Differential Systems: Models, Methods and Applications, EDP Sciences (1998), Vol. 5, 145–158.

    MathSciNet  MATH  Google Scholar 

  22. D. Matignon, Can positive pseudo-differential operators of diffusive type help stabilize unstable systems? In: Proc. of 15th International Symposium on Mathematical Theory of Networks and Systems, University of Notre Dame, USA, https://www3.nd.edu/~mtns/cdrom.pdf (2002).

    Google Scholar 

  23. D. Matignon, Diffusive representations for fractional Laplacian: Systems theory framework and numerical issues. Physica Scripta T136 (2009), 014009; DOI: 10.1088/0031-8949/2009/T136/014009.

    Article  Google Scholar 

  24. D. Matignon, Optimal control of fractional systems: a diffusive formulation. In: Proc. of 19th International Symposium on Mathematical Theory of Networks and Systems, Budapest, Hungary (2010).

    Google Scholar 

  25. G. Montseny, Diffusive representation of pseudodifferential time operators. In: Proc.of ESAIM Fractional Differential Systems: Models, Methods and Applications, EDP Sciences (1998), Vol. 5, 159–175.

    MathSciNet  MATH  Google Scholar 

  26. G. Montseny, J. Audounet, B. Mbodje, Optimal models of fractional integrators and applications to systems with fading memory. In: Int. Conf. IEEE Systems, Man and Cybernetics, Le Touquet, France, IEEE (1993).

    Google Scholar 

  27. I. Petráš, Tuning and implementation methods for fractional order controllers. Fract. Calc. Appl. Anal. 15, No. 2 (2012), 282–303; DOI: 10.2478/s13540-012-0021-4https://www.degruyter.com/view/j/fca.

    Article  MathSciNet  Google Scholar 

  28. S. Pilipović, D. Seleši, Mera i integral–Fundamenti teorije verovatnoće. Zavod za udžbenike (2012).

    Google Scholar 

  29. A. Pisano, M.R. Rapaić, Z.D. Jeličić, E. Usai, Sliding mode control approaches to the robust regulation of linear multivariable fractional-order systems. International J. of Robust and Nonlinear Control 20, No. 18 (2010), 2045–2056; DOI: 10.1002/rnc.1565.

    Article  MathSciNet  Google Scholar 

  30. I. Podlubny, Fractional Differential Equations: An Introduction to Fractional Derivatives, Fractional Differential Equations, to Methods of Their Solution and Some of Their Applications San Diego-Boston-etc., Academic Press (1998).

    MATH  Google Scholar 

  31. M.R. Rapaić, Z.D. Jeličić, Optimal control of a class of fractional heat diffusion systems. Nonlinear Dynamics 62, No. 1–2 (2010), 39–51; DOI: 10.1007/s11071-010-9697-3.

    Article  MathSciNet  Google Scholar 

  32. A.I. Saichev, W.A. Woyczyński, Distributions in the Physical and Engineering Sciences, Volume I. Distributional and Fractal Calculus, Integral Transforms and Wavelets Birkhäuser, Boston (1997).

    MATH  Google Scholar 

  33. J.L. Schiff, The Laplace Transform–Theory and Applications. Springer (1999).

    Book  Google Scholar 

  34. M.S. Tavezoei, Time-response analysis of fractional-order control systems: A survey on recent results. Fract. Calc. Appl. Anal. 17, No. 2 (2014), 440–461; DOI: 10.2478/s13540-014-0179-zhttps://www.degruyter.com/view/j/fca.

    Article  MathSciNet  Google Scholar 

  35. J.C. Trigeassou, N. Maamri, Initial conditions and initialization of linear fractional differential equations. Signal Processing 91, No. 3 (2011), 427–436; DOI: 10.1016/j.sigpro.2010.03.010.

    Article  Google Scholar 

  36. J.C. Trigeassou, N. Maamri, A. Oustaloup, The infinite state approach: Origin and necessity. Computers and Mathematics with Applications 66, No. 5 (2013), 892–907; DOI: 10.1016/j.camwa.2012.11.020.

    Article  MathSciNet  Google Scholar 

  37. J.C. Trigeassou, N. Maamri, J. Sabatier, A. Oustaloup, A Lyapunov approach to stability of fractional differential equations. Signal Processing 91, No. 3 (2011), 437–445; DOI: 10.1016/j.sigpro.2010.04.024.

    Article  Google Scholar 

  38. J.C. Trigeassou, N. Maamri, J. Sabatier, A. Oustaloup, State variables and transients of fractional order differential systems. Computers and Mathematics with Applications 64, No. 10 (2012), 3117–3140; DOI: 10.1016/j.camwa.2012.03.099.

    Article  MathSciNet  Google Scholar 

  39. B.J. West, M. Bologna, P. Grigolini, Physics of Fractal Operators. Springer (2003).

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rapaić, M.R., Šekara, T.B. & Bošković, M.Č. Frequency-Distributed Representation of Irrational Linear Systems. FCAA 21, 1396–1419 (2018). https://doi.org/10.1515/fca-2018-0073

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1515/fca-2018-0073

MSC 2010

Key Words and Phrases

Navigation