Skip to main content
Log in

Approximate controllability for semilinear composite fractional relaxation equations

  • Research Paper
  • Published:
Fractional Calculus and Applied Analysis Aims and scope Submit manuscript

Abstract

We consider a control system governed by a semilinear composite fractional relaxation equation in Hilbert space. We first prove that the system has a mild solution. Then, we investigate the approximate controllability of the relaxation equation under the assumption that the corresponding linear system is approximately controllable. An example is also given to illustrate our results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H.M. Ahmed., Approximate controllability of impulsive neutral stochastic differential equations with fractional Brownian motion in a Hilbert space. Advances in Difference Equations 113 (2014), 1–11.

    MathSciNet  Google Scholar 

  2. K. Balachandran, J.Y. Park., J.J. Trujillo., Controllability of nonlinear fractional dynamical systems. Nonlinear Anal. 75 (2012), 1919–1926

    Article  MathSciNet  Google Scholar 

  3. A.E. Bashirov., N.I. Mahmudov., On concepts of controllability for deterministic and stochastic systems. SIAM J. Control Optim. 37, No 6 (1999), 1808–1821.

    Article  MathSciNet  Google Scholar 

  4. E. Bazhlekova, Subordination principle for fractional evolution equations. Fract. Calc. Appl. Anal. 3, No 3 (2000), 213–230.

    MathSciNet  MATH  Google Scholar 

  5. Y. Cenesiz, Y. Keskin, A. Kurnaz, The solution of Bagley-Torvick equation with the generalized Taylor collocation method. Journal of Franklin Institute 347 (2010), 452–466.

    Article  Google Scholar 

  6. S. Dubey, M. Sharma, Solutions to fractional functional differential equations with nonlocal conditions. Fract. Calc. Appl. Anal. 17, No 3 (2014), 654–673; DOI: 10.2478/sl3540-Ol4-Ol9l-3; http://www.degruyter.com/view/j/fca.2014.17.issue-3/issue-files/fca.2014.17.issue-3.xml.

    Article  MathSciNet  Google Scholar 

  7. Z. Fan, G. Mophou, Remarks on the controllability of fractional differential equations. optimization 63, No 8 (2014), 1205–1217.

    Article  MathSciNet  Google Scholar 

  8. Z. Fan, G. Mophou, Existence and optimal controls for fractional evolution equations. Nonlinear Studies 20, No 2 (2013), 163–172.

    MathSciNet  MATH  Google Scholar 

  9. Z. Fan, Approximate controllability of fractional differential equations via resolvent operators. Advances in Difference Equations 54 (2014), 1–11.

    MathSciNet  Google Scholar 

  10. Z. Fan, Characterization of compactness for resolvents and its applications. Appl. Math. Comput. 232 (2014), 60–67.

    MathSciNet  MATH  Google Scholar 

  11. M. Feckan, J. Wang, Y. Zhou, Controllability of fractional functional evolution equations of Sobolev type via characteristic solution operators. J. Optim. Theory Appl. 156, No 1 (2013), 79–95.

    Article  MathSciNet  Google Scholar 

  12. R. Gorenflo, F. Mainardi, Fractional calculus: integral and differential equations of fractional order. In: Fractals and Fractional Calculus in Continuum Mechanics (Eds. A. Carpinteri and F. Mainardi). Springer Verlag, Wien (1997), 223–276.

    Chapter  Google Scholar 

  13. S. Ji, G. Li, M. Wang, Controllability of impulsive differential systems with nonlocal conditions. Appl. Math. Comput. 217, No 16 (2011), 6981–6989.

    MathSciNet  MATH  Google Scholar 

  14. T.D. Ke., D. Lan, Decay integral solutions for a class of impulsive fractional differential equations in Banach spaces. Fract. Calc. Appl. Anal. 17, No 1 (2014), 96–121. DOI: 10.2478/s13540-014-0157-5;http://www.degruyter.com/view/j/fca.2014.17.issue-1/

    Article  MathSciNet  Google Scholar 

  15. S. Kumar, N. Sukavanam, Controllability of fractional order system with nonlinear term having integral contractor. Fract. Calc. Appl. Anal. 16, No 4 (2013), 791–801. DOI: 10.2478/s13540-013-0049-0; http://www.degruyter.com/view/j/fca.2013.16.issue-4/

    Article  MathSciNet  Google Scholar 

  16. S. Kumar, N. Sukavanam, Approximate controllability of fractional order semilinear systems with bounded delay. J. Diff. Equs. 252 (2012), 6163–6174.

    Article  MathSciNet  Google Scholar 

  17. C. Lizama, H. Prado, Fractional relaxation equations on Banach spaces. Appl. Math. Lett. 23 (2010), 137–142.

    Article  MathSciNet  Google Scholar 

  18. C. Lizama, G. M. N’Gu´er´ekata, Bounded mild solutions for semilinear integro differential equations in Banach spaces. Integr. Equ. Oper. Theory 68 (2010), 207–227.

    Article  MathSciNet  Google Scholar 

  19. C. Lizama, F. Poblete, On a functional equation associated with (a, k)- regularized resolvent families. Abst. Appl. Anal. 2012 (2012), Article ID 495487, 1–23.

    MathSciNet  MATH  Google Scholar 

  20. J. Liang, J.H. Liu., T.J. Xiao., Nonlocal problems for integrodifferential equations. Dyn. Contin. Discrete Impuls. Syst. Ser. A: Math. Anal. 15 (2008), 815–824.

    MathSciNet  MATH  Google Scholar 

  21. N.I. Mahmudov., Approximate controllability of semilinear deterministic and stochastic evolution equation in abstract spaces. SIAM J. Control Optim. 42, No 5 (2003), 1604–1622.

    Article  MathSciNet  Google Scholar 

  22. N.I. Mahmudov., Approximate controllability of fractional Sobolevtype evolution equations in Banach spaces. Abstr. Appl. Anal. 2013 (2013), Article ID 502839, 1–9.

    Google Scholar 

  23. N.I. Mahmudov., Approximate controllability of fractional neutral evolution equations in Banach spaces. Abstr. Appl. Anal. 2013 (2013), Article ID 531894, 1–11.

    MathSciNet  MATH  Google Scholar 

  24. G.M. Mophou., G.M. N’Gu´er´ekata, Optimal control of a fractional diffusion equation with state constraints. Comput. Math. Appl. 62 (2011), 1413–1426.

    Article  MathSciNet  Google Scholar 

  25. G.M. Mophou., Optimal control of fractional diffusion equation. Comput. Math. Appl. 61, No 1 (2011), 68–78.

    Article  MathSciNet  Google Scholar 

  26. I. Podlubny, Fractional Differential Equations. Academic Press, San Diego (1999).

    MATH  Google Scholar 

  27. J. Prüss, Evolutionary Integral Equations and Applications. Birkhäuser, Basel-Berlin (1993).

    Book  Google Scholar 

  28. K. Rykaczewski, Approximate controllability of differential inclusions in Hilbert spaces. Nonlinear Anal. 75 (2012), 2701–2712.

    Article  MathSciNet  Google Scholar 

  29. R. Sakthivel, N.I. Mahmudov., J.J. Nieto., Controllability for a class of fractional-order neutral evolution control systems. Appl. Math. Comput. 218 (2012), 10334–10340.

    MathSciNet  MATH  Google Scholar 

  30. R. Sakthivel, R. Ganesh, S.M. Anthoni., Approximate controllability of fractional nonlinear differential inclusions. Appl. Math. Comput. 225 (2013), 708–717.

    MathSciNet  MATH  Google Scholar 

  31. R. Sakthivel, R. Ganesh, Y. Ren, S.M. Anthoni., Approximate controllability of nonlinear fractional dynamical systems. Commun. Nonlinear Sci. Numer. Simul. 18 (2013), 3498–3508.

    Article  MathSciNet  Google Scholar 

  32. R. Sakthivel, Approximate controllability of fractional neutral stochastic system with infinite delay. Rep. Math. Phys. 70 (2012), 291–311.

    Article  MathSciNet  Google Scholar 

  33. J. Wang, Y. Zhou, M. Medved, On the solvability and optimal controls of fractional integrodifferential evolution systems with infinite delay. J. Optim. Theory Appl. 389 (2012), 261–274.

    MathSciNet  MATH  Google Scholar 

  34. Z.H. Wang, X. Wang, General solution of Bagley-Torvick equation with fractional-order derivative. Commun Nonlinear Sci Numer Simulat. 15 (2010), 1279–1285.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhenbin Fan.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fan, Z., Dong, Q. & Li, G. Approximate controllability for semilinear composite fractional relaxation equations. FCAA 19, 267–284 (2016). https://doi.org/10.1515/fca-2016-0015

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1515/fca-2016-0015

MSC

Key Words and Phrases

Navigation