Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter June 4, 2015

Image of the braid groups inside the finite Iwahori–Hecke algebras

  • Olivier Brunat EMAIL logo , Kay Magaard and Ivan Marin

Abstract

The Iwahori–Hecke algebras of type A are deformations of the group algebras of the symmetric groups, and can be defined as quotients of the group algebras of the braid groups. We determine the image of the braid groups inside these algebras, when defined over a finite field, in the semisimple case, and for suitably large (but controllable) order of the defining (quantum) parameter.

References

[1] O. Brunat and I. Marin, The image of the braid groups inside the finite Temperley–Lieb algebras, Math. Z. 277 (2014), 651–664. 10.1007/s00209-013-1270-6Search in Google Scholar

[2] H. S. M. Coxeter, Factor groups of the braid groups, Proceedings of the fourth Canadian Mathematical Congress (Banff 1957), University of Toronto Press, Toronto (1959), 95–122. Search in Google Scholar

[3] M. Freedman, M. Larsen and Z. Wang, The two-eigenvalue problem and density of Jones representation of braid groups, Comm. Math. Phys. 228 (2002), 177–199. 10.1007/s002200200636Search in Google Scholar

[4] M. Geck and G. Pfeiffer, Characters of finite Coxeter groups and Iwahori–Hecke algebras, London Math. Soc. Monogr. New Ser. 21, Clarendon Press, Oxford 2000. Search in Google Scholar

[5] E. A. Gorin and V. J. Lin, Algebraic equations with continuous coefficients and some problems of the algebraic theory of braids, Mat. Sb. 78(120) (1969), 569–596. 10.1070/SM1969v007n04ABEH001104Search in Google Scholar

[6] R. M. Guralnick and J. Saxl, Generation of finite almost simple groups by conjugates, J. Algebra 268 (2003), 519–571. 10.1016/S0021-8693(03)00182-0Search in Google Scholar

[7] I. M. Isaacs, Character theory of finite groups, Academic Press, New York 1976. Search in Google Scholar

[8] I. Marin, Représentations linéaires des tresses infinitésimales, Thèse, Université d’Orsay, 2001. Search in Google Scholar

[9] I. Marin, Caractères de rigidité du groupe de Grothendieck–Teichmüller, Compos. Math. 142 (2006), 657–678. 10.1112/S0010437X0600193XSearch in Google Scholar

[10] I. Marin, L’algèbre de Lie des transpositions, J. Algebra 310 (2007), 742–774. 10.1016/j.jalgebra.2006.09.029Search in Google Scholar

[11] I. Marin, Infinitesimal Hecke algebras II, III, IV, preprint (2009), http://arxiv.org/abs/0911.1879, preprint 2010, http://arxiv.org/abs/1012.4424, preprint 2012, http://arxiv.org/abs/1212.1279. Search in Google Scholar

[12] I. Marin, The freeness conjecture for Hecke algebras of complex reflection groups, and the case of the Hessian group G26, J. Pure Appl. Algebra 218 (2014), 704–720. 10.1016/j.jpaa.2013.08.009Search in Google Scholar

[13] A. Mathas, Iwahori–Hecke algebras and Schur algebras of the symmetric groups, Univ. Lecture Ser. 15, American Mathematical Society, Providence 1999. 10.1090/ulect/015/02Search in Google Scholar

[14] M. Suzuki, Group theory I, Springer, Berlin 1982. 10.1007/978-3-642-61804-8Search in Google Scholar

[15] R. A. Wilson, The finite simple groups, Grad. Texts in Math. 251, Springer, New York 2009. 10.1007/978-1-84800-988-2Search in Google Scholar

Received: 2014-2-3
Revised: 2015-1-5
Published Online: 2015-6-4
Published in Print: 2017-12-1

© 2017 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 19.4.2024 from https://www.degruyter.com/document/doi/10.1515/crelle-2015-0004/html
Scroll to top button