Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter December 30, 2014

Treatment of natural rubber latex serum waste by co-digestion with macroalgae, Chaetomorpha sp. and Ulva intestinalis, for sustainable production of biogas

  • Aneeta Pake , Chonlatee Cheewasedtham and Wilairat Cheewasedtham EMAIL logo
From the journal Chemical Papers

Abstract

Biogas production is proposed as an alternative approach to using natural rubber Hevea brasiliensis latex serum, a major waste product from the production of concentrated latex. To make the most efficient use of the reactor size, the addition of macroalgal biomass as a co-substrate to the fermentation system was investigated. The biogas yield of latex serum as a single substrate was (398 ± 14) L per kg of volatile solids added (VSA). For the co-digestion system, algae mixed with serum were investigated at wet mass ratios of Chaetomorpha sp. to Ulva intestinalis to serum at 3 : 0 : 1, 2 : 0 : 2, 1 : 0 : 3, 0 : 1 : 3, 0 : 2 : 2 and 0 : 3 : 1. The co-digestion system with latex serum at 2 to 3 out of 4 parts produced the highest biogas yields within the range of 422-460 L kg−1 of VSA. Other parameters such as carbon to nitrogen mass ratio, total solids content and initial pH value were investigated at the constant ratio of 1 : 3 of Chaetomorpha sp. to latex serum, and the parameter settings of 15, 10.5 % and 7, respectively, were close to optimal, with an (888 ± 155) L kg−1 of VSA cumulative gas yield. The methane yield of the optimised system over 45 days was (197 ± 16) L kg−1 of VSA and the reduction in COD was (40 ± 4) %. Latex serum, whether alone or co-digested with algae in biogas production, appears to be promising for the management of waste in concentrated latex production.

References

Alfa, I. M., Dahunsi, S. O., Iorhemen, O. T., Okafor, C. C., & Ajayi, S. A. (2014). Comparative evaluation of biogas production from Poultry droppings, Cow dung and Lemon grass. Bioresource Technology, 157, 270-277. DOI: 10.1016/j.biortech.2014.01.108.10.1016/j.biortech.2014.01.108Search in Google Scholar

Alvarez, R., & Liden, G. (2008). Semi-continuous co-digestion of solid slaughterhouse waste, manure and fruit and vegetable waste. Renewable Energy, 33, 726-734. DOI: 10.1016/j. renene.2007.05.001.Search in Google Scholar

Association of Official Analytical Chemists (2000). Official methods of analysis (17th ed.). Madison, WI, USA: Association of Official Analytical Chemists.Search in Google Scholar

American Public Health Association (1998). Standard methods for the examination of water and waste water (20th ed.). Washington, DC, USA: American Public Health Association.Search in Google Scholar

Bruhn, A., Dahl, J., Nielsen, H. B., Nikolaisen, L., Rasmussen, M. B., Markager, S., Olesen, B., Arias, C., & Jensen, P. D. (2011). Bioenergy potential of Ulva lactuca: Biomass yield, methane production and combustion. Bioresource Technology, 102, 2595-2604. DOI: 10.1016/j.biortech.2010.10.010.10.1016/j.biortech.2010.10.010Search in Google Scholar

Bucholc, K., Szymczak-Z˙ y_la, M., Lubecki, L., Zamojska, A., Hapter, P., Tjernstr¨om, E., & Kowalewska, G. (2014). Nutrient content in macrophyta collected from southern Baltic Sea beaches in relation to eutrophication and biogas production. Science of the Total Environment, 473-474, 298-307. DOI: 10.1016/j.scitotenv.2013.12.044.10.1016/j.scitotenv.2013.12.044Search in Google Scholar

Carver, S. M., Hulatt, C. J., Thomas, D. N., & Tuovinen, O. H. (2011). Thermophilic, anaerobic co-digestion of microalgal biomass and cellulose for H2 production. Biodegration, 22, 805-814. DOI: 10.1007/s10532-010-9419-z.10.1007/s10532-010-9419-zSearch in Google Scholar

Chen, Y., Cheng, J. J., & Creamer, K. S. (2008). Inhibition of anaerobic digestion process: A review. Bioresource Technology, 99, 4044-4064. DOI: 10.1016/j.biortech.2007.01.057.10.1016/j.biortech.2007.01.057Search in Google Scholar

Costa, J. C., Gon,calves, P. R., Nobre, A., & Alves, M. M. (2012). Biomethanation potential of macroalgae Ulva spp. and Gracilaria spp. and in co-digestion with waste activated sludge. Bioresource Technology, 114, 320-326. DOI: 10.1016/j.biortech.2012.03.011.10.1016/j.biortech.2012.03.011Search in Google Scholar

El-Mashad, H. M., & Zhang, R. H. (2010). Biogas production from co-digestion of dairy manure and food waste. Bioresource Technology, 101, 4021-4028. DOI: 10.1016/j.biortech. 2010.01.027.Search in Google Scholar

Gurung, A., Van Ginkel, S. W., Kang, W. C., Qambrani, N. A., & Oh, S. E. (2012). Evaluation of marine biomass as a source of methane in batch tests: A lab-scale study. Energy, 43, 396-401. DOI: 10.1016/j.energy.2012.04.005.10.1016/j.energy.2012.04.005Search in Google Scholar

Kolesárová, N., Hutňan, M., Špalkova, V., & Lazor, M. (2013). Anaerobic treatment of rapeseed meal. Chemical Papers, 67, 1569-1576. DOI: 10.2478/s11696-013-0318-8.10.2478/s11696-013-0318-8Search in Google Scholar

Li, L. H., Li, D., Sun, Y. M., Ma, L. L., Yuan, Z. H., & Kong, X. Y. (2010). Effect of temperature and solid concentration on anaerobic digestion of rice straw in South China. International Journal of Hydrogen Energy, 35, 7261-7266. DOI: 10.1016/j.ijhydene.2010.03.074.10.1016/j.ijhydene.2010.03.074Search in Google Scholar

Lim, Y. G., Niwa, C., Nagao, N., & Toda, T. (2008). Solubilization and methanogenesis of blue mussle in saline mesophilic anaerobic biodegradation. International Biodeterioration & Biodegradation, 61, 251-260. DOI: 10.1016/j.ibiod.2007.06. 012.Search in Google Scholar

Malta, E. J., & Verschuure, J. M. (1997). Effects of environmental variables on between-year variation of Ulva growth and biomass in a eutrophic brackish lake. Journal of Sea Research, 38, 71-84. DOI: 10.1016/s1385-1101(97)00039-7.10.1016/S1385-1101(97)00039-7Search in Google Scholar

Marquez, G. P. B., Reichardt, W. T., Azanza, R. V., Klocke, M., & Monta˜no, M. N. E. (2013). Thalassic biogas production from sea wrack biomass using different microbial seeds: Cow manure, marine sediment and sea wrackassociated microflora. Bioresource Technology, 133, 612-617. DOI: 10.1016/j.biortech.2013.01.082.10.1016/j.biortech.2013.01.082Search in Google Scholar

Matsui, T., & Koike, Y. (2010). Methane fermentation of a mixture of seaweed and milk at a pilot-scale plant. Journal of Bioscience and Bioengineering, 110, 558-563. DOI: 10.1016/j.jbiosc.2010.06.011.10.1016/j.jbiosc.2010.06.011Search in Google Scholar

Mehlich, A. (1984). Mehlich 3 soil test extractant: A modification of Mehlich 2 extractant. Communications in Soil Science and Plant Analysis, 15, 1409-1416. DOI: 10.1080/00103628409367568.10.1080/00103628409367568Search in Google Scholar

Menéndez, M., Martinez, M., & Comin, F. A. (2001). A comparative study of the effect of pH and inorganic carbon resources on the photosynthesis of three floating macroalgae species of a Mediterranean coastal lagoon. Journal of Experimental Marine Biology and Ecology, 256, 123-136. DOI: 10.1016/s0022-0981(00)00313-0.10.1016/S0022-0981(00)00313-0Search in Google Scholar

Michalska, K., & Ledakowicz, S. (2013). Alkali pre-treatment of Sorghum Moench for biogas production. Chemical Papers, 67, 1130-1137. DOI: 10.2478/s11696-012-0298-0.10.2478/s11696-012-0298-0Search in Google Scholar

Msuya, F. E., & Neori, A. (2002). Ulva reticulata and Gracilaria crassa: Macroalgae that can biofilter effluent from tidal fishponds in Tanzania. Western Indian Ocean Journal of Marine Science, 1, 117-126.Search in Google Scholar

Nielsen, M. M., Bruhn, A., Rasmussen, M. B., Olesen, B., Larsen, M. M., & Moller, H. B. (2012). Cultivation of Ulva lactuca with manure for simultaneous bioremediation and biomass production. Journal of Applied Phycology, 24, 449-458. DOI: 10.1007/s10811-011-9767-z.10.1007/s10811-011-9767-zSearch in Google Scholar

Panyadee, S., Petiraksakul, A., & Phalakornkule, C. (2013). Biogas production from co-digestion of Phyllanthus emblica residues and food waste. Energy for Sustainable Development, 17, 515-520. DOI: 10.1016/j.esd.2013.07.003.10.1016/j.esd.2013.07.003Search in Google Scholar

Parkin, G. F., & Owen, W. F. (1986). Fundamentals of anaerobic digestion of wastewater sludges. Journal of Environmental Engineering, 112, 867-920. DOI: 10.1061/(asce)0733-9372(1986)112:5(867).10.1061/(ASCE)0733-9372(1986)112:5(867)Search in Google Scholar

Research and Development Centre for Thai Rubber Industry (2011, December 25). Statistics of rubber in Thailand. Retrieved December 25, 2011, from http://www.rubbercenter.org/informationcenter/static/statthai.html (in Thai) Search in Google Scholar

Sujanya, S., & Chandra, S. (2011). Effect of part replacement of chemical fertilizers with organic and bio-organic agents in ground nut, Arachis hypogea. Journal of Algal Biomass Utilization, 2, 38-41.Search in Google Scholar

Thai Latex Association (2011, December 25). Membership Thai Latex Association. Retrieved December 25, 2011, from http://www.tla-latex.org/member.php (in Thai) Search in Google Scholar

Tekasakul, P., & Tekasakul, S. (2006). Environmental problems related to natural rubber production in Thailand. Journal of Aerosol Research, 21, 122-129.Search in Google Scholar

Vergara-Fernandez, A., Vargas, G., Alarcon, N., & Velasco, A. (2008). Evaluation of marine algae as a source of biogas in a two-stage anaerobic reactor system. Biomass and Bioenergy, 32, 338-344. DOI: 10.1016/j.biombioe.2007.10.005.10.1016/j.biombioe.2007.10.005Search in Google Scholar

Walkley, A., & Black, I. A. (1934). An examination of Degtjareff method for determining soil organic matter and a proposed modification of the chromic acid titration method. Soil Science, 37, 29-38.10.1097/00010694-193401000-00003Search in Google Scholar

Ward, A. J., Hobbs, P. J., Holliman, P. J., & Jones, D. L. (2008). Optimisation of the anaerobic digestion of agricultural resources. Bioresource Technology, 99, 7928-7940. DOI: 10.1016/j.biortech.2008.02.044.10.1016/j.biortech.2008.02.044Search in Google Scholar

Weykam, G., Gomez, I., Wiencke, C., Iken, K., & Kl¨oser, H. (1996). Photosynthetic characteristics and C : N ratios of macroalgae from King George Island (Antarctica). Journal of Experimental Marine Biology and Ecology, 204, 1-22. DOI: 10.1016/0022-0981(96)02576-2.10.1016/0022-0981(96)02576-2Search in Google Scholar

Yadvika, S., Sreekrishnan, T. R., Kohli, S., & Rana, V. (2004). Enhancement of biogas production from solid substrates using different techniques: A review. Bioresource Technology, 95, 1-10. DOI: 10.1016/j.biortech.2004.02.010.10.1016/j.biortech.2004.02.010Search in Google Scholar

Zeeman, G., & Gerbens, S. (2001). CH4 Emissions from animal manure. In Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories. Retrieved May 29, 2014, from http://www.ipccnggip.iges.or.jp/public/gp/bgp/43CH4AnimalManure.pdfSearch in Google Scholar

Zhong, W. H., Zhang, Z. Z., Luo, Y. J., Qiao, W., Xiao, M., & Zhang, M. (2012). Biogas productivity by co-digesting Taihu blue algae with corn straw as an external carbon source. Bioresource Technology, 114, 281-286. DOI: 10.1016/j.biortech.2012.02.111.10.1016/j.biortech.2012.02.111Search in Google Scholar

Zubr, J. (1986). Methanogenic fermentation of fresh and ensiled plant materials. Biomass, 11, 159-171. DOI: 10.1016/0144-4565(86)90064-8. 10.1016/0144-4565(86)90064-8Search in Google Scholar

Received: 2014-1-21
Revised: 2014-6-12
Accepted: 2014-8-3
Published Online: 2014-12-30
Published in Print: 2015-3-1

© 2015 Institute of Chemistry, Slovak Academy of Sciences

Downloaded on 24.4.2024 from https://www.degruyter.com/document/doi/10.1515/chempap-2015-0049/html
Scroll to top button