Skip to main content

Advertisement

Log in

Mitochondrial clock: moderating evolution of early eukaryotes in light of the Proterozoic oceans

  • Review
  • Section Cellular and Molecular Biology
  • Published:
Biologia Aims and scope Submit manuscript

An Erratum to this article was published on 01 May 2017

This article has been updated

Abstract

Evolution of early eukaryotes in the primitive Eartli relied lieavily on the origin and evolution of mitochondria. Understanding the structure and origin of mitochondria has a germane relation to understanding origin and evolution of eukaryotes. In light of the extreme conditions and the then existing Proterozoic ocean chemistry, eukaryotic cells developed adaptive adjustments for energy management. Apart from mitochondria, more reduced homologues like hydrogenosomes and mitosomes facilitated the metabolic activities of such eukaryotic life. In this short review, I highlight the importance of mitochondria in pushing eukaryotes to the peak of the evolutionary pyramid. Our knowledge has expanded but studying recent eukaryotic extremophiles and mitochondrial genomics in more details will enable us to estimate the position of the mitochondrial clock, understand its role better, and possibly find new eukaryotic lineages.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Change history

  • 30 December 2017

    Due to a misunderstanding caused by the author, Dr. Shamik Dasgupta, the name of the co-author, Dr. Jiasong Fang (who has been acknowledged in the manuscript), was omitted in the original publication. The correct authorship of this article is below.

References

  • Adl S.M., Simpson A.G., Farmer M.A., Andersen R.A., Anderson O.R., Barta J.R., Bowser S.S., Brugerolle G., Fensome R.A., Fredericq S., James T.Y., Karpov S., Kugrens P., Krug J., Lane CE., Lewis L.A., Lodge J., Lynn D.H., Mann D.G., Mc-Court R.M., Mendoza L., Moestrup O., Mozley-Standridge S.E., Nerad T.A., Shearer C.A., Smirnov A.V., Spiegel F.W. & Taylor M.F. 2005. The new higher level classiflcation of eukaryotes with emphasis on the taxonomy of protists. J Eu-karyot. Microbiol. 52: 399–451.

    Article  Google Scholar 

  • Adl S.M., Simpson A.G., Lane C.E., Lukes J., Bass D., Bowser S.S., Brown M.W., Burki F., Dunthorn M., Hampl V., Heiss A., Hoppenrath M., Lara E., Le Gall L., Lynn D.H., Mc-Manus H., Mitchell E.A., Mozley-Stanridge S.E., Parfrey L.W., Pawlowski J., Rueckert S., Shadwick R.S., Schoch C.L., Smirnov A. & Spiegel F.W. 2012. The revised classiflcation of eukaryotes. J. Eukaryot. Microbiol. 59: 429–493.

    Article  PubMed  PubMed Central  Google Scholar 

  • Andersson S.G.E. & Kurland C.G. 1999. Origins of mitochondria and hydrogenosomes. Curr. Opin. Microbiol. 2: 535–541.

    Article  CAS  PubMed  Google Scholar 

  • Boxma B., de Graaf R.R., van der Staay G.W.M., van Alen T.A., Ricard G., Gabaldon T., van Hoek A.H.A.M., van der Staay S.Y.M., Koopman W.J.H., Hellemond J.J., Tielens A.G.M., Friedrich T., Veenhuis M., Huynen M.A. & Hackstein J.H. P. 2005. An anaerobic mitochondrion that produces hydrogen. Nature 434: 74–79.

    Article  CAS  PubMed  Google Scholar 

  • Boxma B., Voncken F., Jannink S., van Alen T., Akhmanova A., van Weelden S.W., Hellemond J.J., Ricard G., Huynen M., Tielens A.G. & Hackstein J.H. 2004. The anaerobic chytrid-iomycete fungus Piromyces sp E2 produces ethanol via pyruvate:formate lyase and an alcohol dehydrogenase E. Mol. Microbiol. 51: 1389–1399.

    Article  CAS  PubMed  Google Scholar 

  • Buetow D.E. 1989. The mitochondrion, pp. 247–314. In: Buetow D.E. (ed.), The Biology of Euglena. Subcellular Biochemistry and Molecular Biology, 4, Academic Press, San Diego.

    Google Scholar 

  • Bui E.T.N., Bradley P.J. & Johnson P.J. 1996. A common evolutionary origin for mitochondria and hydrogenosomes. Proc. Nati. Acad. Sci. USA 93: 9651–9656.

    Article  CAS  Google Scholar 

  • Canfleld D.E. 2005. The early history of atmospheric oxygen: homage to Robert M. Garrels. Annu. Rev. Earth Planet. Sci. 33: 1–36.

    Article  CAS  Google Scholar 

  • Canfleld D.E., Poulton S.W. & Narbonne G.M. 2007. Late Neoproterozoic deep-ocean oxygenation and the rise of animal life. Science 315: 92–95.

    Article  CAS  Google Scholar 

  • Dasgupta S., Fang J., Brake S.S., Hasiotis S.T. & Zhang L. 2012. Biosynthesis of sterols and wax esters by Euglena of acid mine drainage biofllms: implications for eukaryotic evolution and the early Earth. Chem. Geol. 306-307: 139–145.

    Article  CAS  Google Scholar 

  • Dietrich L.E.P., Tice M.M. & Newman D.K. 2006. The coevolution of life and Earth. Curr. Biol. 16: 395–400.

    Article  CAS  Google Scholar 

  • Dubilier N., Windoffer R., Grieshaber M.K. & Giere O. 1997. Ultrastructure and anaerobic metabolism of mitochondria in the marine oligochaete Tubificoides benedii: effects of hypoxia and sulflde. Mar. Biol. 127: 637–645.

    Article  CAS  Google Scholar 

  • Embley T.M. & Hirt R.P. 1998. Early branching eukaryotes? Curr. Opin. Genet. Dev. 8: 655–661.

    Article  Google Scholar 

  • Embley T.M., van der Giezen M., Horner D.S., Dyal P.L., Bell S. & Foster P.G. 2003. Hydrogenosomes, mitochondria and early eukaryotic evolution. IUBMB Life 55: 387–395.

    Article  CAS  PubMed  Google Scholar 

  • Fenchel T. & Finlay B.J. 1995. Ecology and Evolution in Anoxic Worlds. Oxford University Press, Oxford, United Kingdom, 288 pp.

    Google Scholar 

  • Gabaldon T. & Pittis A.A. 2015. Origin and evolution of metabolic subcellular compartmentalization in eukaryotes. Biochimie 119: 262–268.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Goldberg A.V., Molik S., Tsaousis A.D., Neumann K., Kuhnke G., Delbac F., Vivares C.P., Hirt R.P., Lili R. & Embley T.M. 2008. Localization and functionality of microsporidian iron-sulphur cluster assembly proteins. Nature 452: 624–628.

    Article  CAS  PubMed  Google Scholar 

  • Goosen N.K., Wagener S. & Stumm C.K. 1990. A comparison of two strains of the anaerobic ciliate Trimyema compressum. Arch. Microbiol. 153: 187–192.

    Google Scholar 

  • Gray M.W. 2012. Mitochondrial evolution. Cold Spring Harb. Perspect. Biol. 4: a011403.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Gray M.W., Burger G. & Lang B.F. 2001. The origin and early evolution of mitochondria. Genome Biol. 2: 1018.1–1018.5.

    Article  Google Scholar 

  • Hampl V., Silberman J.D., Stechmann A., Diaz-Trivino S., Johnson P. J. & Roger A. J. 2008. Genetic evidence for a mitochondriate ancestry in the “amitochondriate” flagellate Trimastix pyriformas. PLoS One 3: el383.

  • Han T.M. & Runnegar B. 1992. Megascopic eukaryotic algae from the 2.1-billion-year-old Negaunee iron-formation, Michigan. Science 257: 232–235.

    Article  CAS  PubMed  Google Scholar 

  • He D., Fiz-Palacios O., Fu C.J., Fehling J., Tsai C.C. & Baldauf S.L. 2014. An alternative root for the eukaryotic tree of life. Curr. Biol. 24: 465–470.

    Article  CAS  PubMed  Google Scholar 

  • Hellemond J.J., Hoek A., Schreur P.W., Chupin V., Ozdirekcan S., Geysen D., van Grinsven K.W.A., Koets A.P., Van den Bossche P., Geerts S. & Tielens A.G.M. 2007. Energy metabolism of bloodstream form Trypanosoma theüeri. Eu-karyot. Cell 6: 1693–1696.

    Google Scholar 

  • Hellemond J.J., Luijten M., Flesch F.M., Gaasenbeek C.P.H. & Tielens A.G. M. 1996. Rhodoquinone is synthesized de novo by Fasciola hepatica. Mol. Biochem. Parasitol. 82: 217–226.

    Article  Google Scholar 

  • Hellemond J.J. & Tielens A.G.M. 1997. Inhibition of the respiratory chain results in a reversible metabolic arrest in Leishmania promastigotes. Mol. Biochem. Parasitol. 85: 135–138.

    Article  PubMed  Google Scholar 

  • Hildebrandt T.M. & Grieshaber M.K. 2008. Redox regulation of mitochondrial sulflde oxidation in the lugworm, Arenicolo, marina. J. Exp. Biol. 211: 2617–2623.

    Article  Google Scholar 

  • Hoffmeister M., Piotrowski M., Nowitzki U. & Martin W. 2004. Mitochondrial irans-2-enoyl-CoA reduciase of wax ester fermentation from Euglena gracilis defines a new family of en-zymes involved in lipid synthesis. J. Biol. Chem. 280: 4329- 4338.

  • Hürdy I. & Müller M. 1995a. Primary structure and eubacterial relationships of the pyruvate:ferredoxin oxidoreductase of the amitochondriate eukaryote, Trichomonas vaginalis. J. Mol. Evol. 41: 388–396.

    Article  Google Scholar 

  • Hürdy I. & Müller M. 1995b. Primary structure of the hydrogenosomal malic enzyme of Trichomonas vaginalis and its relationship to homologous enzymes. J. Eukaryot. Microbiol. 42: 593–603.

    Article  Google Scholar 

  • Inui H., Miyatake K., Nakano Y. & Kitaoka S. 1982. Wax ester fermentation in Euglena gracilis. FEBS Lett. 150: 89–93.

    Article  CAS  Google Scholar 

  • Inui H., Miyatake K., Nakano Y. & Kitaoka S. 1983. Production and composition of wax ester by fermentation of Euglena gracilis. Agric. Biol. Chem. 47: 2669–2671.

    CAS  Google Scholar 

  • Javaux E.J., Knoll A.H. & Walter M.R. 2004. TEM evidence for eukaryotic diversity in mid-Proterozoic oceans. Geobiology 2: 121–132.

    Article  Google Scholar 

  • Klein B., Grossi V., Bouriat P., Goulas P. & Grimaud R. 2008. Cytoplasmic wax ester accumulation during biofillmdriven substrate assimilation at the alkanewater interface by Marinobacter hydrocarbonoclasticus SP17. Res. Microbiol. 159: 137–144.

    Article  CAS  PubMed  Google Scholar 

  • Koonin E.V. 2010. The origin and early evolution of eukaryotes in the light of phylogenomics. Genome Biol. 11: 209.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Krauss S. 2001. Mitochondria: Structure and Role in Respiration. Nature Encyclopedia of Life Sciences, Nature Publishing Group.

    Google Scholar 

  • Lañe N. & Martin W. 2010. The energetic of genome complexity. Nature 467: 594–601.

    Article  CAS  Google Scholar 

  • Lill R., Hoffmann B., Molik S., Pierik A.J., Rietzschel N., Stehling O., Uzarska M.A., Webert H., Wilbrecht C. & Mühlenhoff U. 2012. The role of mitochondria in cellular ironsulfur pro-tein biogenesis and iron metabolism. Biochim. Biophys. Acta 1823: 1491–1508.

    Article  CAS  PubMed  Google Scholar 

  • Lill R. & Mühlenhoff U. 2008. Maturation of ironsulfur proteins in eukaryotes: mechanisms, connected processes, and diseases. Annu. Rev. Biochem 77: 669–700.

    Article  CAS  PubMed  Google Scholar 

  • Lindmark D.G. & Müller M. 1973. Hydrogenosome, a cytoplasmic organelle of the anaerobic flagellate, Tritrichomonas foetus and its role in pyruvate metabolism. J. Biol. Chem. 248: 7724–7728.

    CAS  PubMed  Google Scholar 

  • Lopez-Garcia P. & Moreira D. 1999. Metabolic symbiosis at the origin of eukaryotes. Trends Biochem. Sci. 24: 88–93.

    Article  CAS  PubMed  Google Scholar 

  • Maguire F. & Richards T.A. 2014. Organelle evolution: a mosaic of ‘mitochondrial’ functions. Curr. Biol. Dispatches 24: R518-R520.

  • Mai Z.M., Ghosh S., Frisardi M., Rosenthal B., Rogers R. & Samuelson J. 1999. Hsp60 is targeted to a cryptic mitochondrion derived organelle (“crypton”) in the microaerophilic protozoan parasite Entamoeba histolytica. Mol. Cell Biol. 19: 2198–2205.

    CAS  Google Scholar 

  • Martin W. & Mentel M. 2010. The Origin of Mitochondria. Nature Education 3: 58.

  • Martin W. & Müller M. 1998. The hydrogen hypothesis for the filrst eukaryote. Nature 392: 37–41.

    Article  CAS  PubMed  Google Scholar 

  • Martin W. & Müller M. 2007. Origin of Mitochondria and Hydrogenosomes. Springer-Verlag, Berlin, Germany, 306 pp.

    Google Scholar 

  • Mentel M. & Martin W. 2008. Energy metabolism among eukaryotic anaerobes in light of Proterozoic ocean chemistry. Philos. Trans. R. Soc. Lond. B. Biol. Sci. 363: 2717–2729.

    Article  PubMed  PubMed Central  Google Scholar 

  • Mountfort D.O. & Orpin C.G. 1994. Anaerobic Fungi: Biology, Ecology and Function. Marcel Dekker Inc, New York, U.S.A., 304 pp.

    Google Scholar 

  • Müller M. 1993. The hydrogenosome. J. Gen. Microbiol. 139: 2879–2889.

    Article  PubMed  Google Scholar 

  • Müller M. 2003. Energy metabolism. Part I. Anaerobic protozoa, pp. 125–139. In: Marr J.J., Nilsen T.W. & Komuniecki R.W. (eds), Molecular Medical Parasitology. Academic Press, London, United Kingdom

    Google Scholar 

  • Müller M., Mentel M., Hellemond J.J., Henze K., Woehle C., Gould S.B., Yu R.Y., van der Giezen M., Tielens A.G.M. & Martin W.F. 2012. Biochemistry and evolution of anaerobic energy metabolism in eukaryotes. Microbiol. Mol. Biol. Rew. 76: 444–495.

    Article  CAS  Google Scholar 

  • Nagai J., Otha T. & Saito E. 1971. Incorporation of propionate into wax esters by etiolated Euglena. Biochem. Biophys. Res. Commun. 42: 523–529.

    Article  CAS  Google Scholar 

  • Nakazawa M., Takenaka S., Ueda M., Inui H., Nakano Y. & Miyatake K. 2003. Pyruvate:NADP + oxidoreductase is stabilized by its cofactor, thiamin pyrophosphate, in mitochondria of Euglena gracilis. Arch. Biochem. Biophys. 411: 183–188.

    Article  CAS  Google Scholar 

  • Perez E., Lapaille M., Degand H., Cilibrasi L., Villavicencio-Queijeiro A., Morsomme P., Gonzalez-Halphene D., Field, M.C., Remacle C., Baurain D. & Cardol P. 2014. The mitochondrial respiratory chain of the secondary green alga Eu-glena graclis shares many additional subunits with parasitic Trypanosomatidae. Mitochondrion 19: 338–349.

    Article  CAS  PubMed  Google Scholar 

  • Reeves R.E. 1984. Metabolism of Entamoeba histolytica Schaudinn, 1903. Adv. Parasitol. 23: 105–142.

    Article  CAS  PubMed  Google Scholar 

  • Reeves R.E., Warren L.G., Susskind B. & Lo H.S. 1977. An energy-conserving pyruvate-to-acetate pathway in Entamoeba histolytica. Pyruvate synthase and a new acetate thiokinase. J. Biol. Chem. 252: 726–731.

    CAS  PubMed  Google Scholar 

  • Roger A.J., Clark C.G. & Doolittle W.F. 1996. A possible mitochondrial gene in the earlybranching amitochondriate pro-tist Trichomonas vaginalis. Proc. Nati. Acad. Sci. USA 93: 14618–14622.

    Article  CAS  Google Scholar 

  • Samuelsson J. & Butterfleld N. 2001. Neoproterozoic fossils from the Franklin Mountains, northwestern Canada: stratigraphic and palaeobiological implications. Precambrian Res. 107: 235–251.

    Article  CAS  Google Scholar 

  • Schatz G. 2013. Getting mitochondria to the center stage. Biochem. Biophys. Res. Commun. 434: 407–410.

    Article  CAS  PubMed  Google Scholar 

  • Schneider R.E., Brown M.T., Shiflett A.M., Dyall S.D., Hayes R.D., Xie Y., Loo J.A. & Johnson P.J. 2011. The Trichomonas vaginalis hydrogenosome proteome is highly re-duced relative to mitochondria, yet complex compared with mitosomes. Int. J. Parasitol. 41: 1421–1434.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shiflett A.M. & Johnson P.J. 2010. Mitochondrion-related organelles in eukaryotic protists. Annu. Rev. Microbiol. 64: 409–429.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sousa F.L., Neukirchen S., Alien J.F., Lane N. & Martin W.F. 2016. Lokiarchaeon is hydrogen dependent. Nat. Microbiol. 34: 1–3.

    Google Scholar 

  • Spang A., Saw J.H., Jrrgensen S.L., Zaremba-Niedzwiedzka K., Martjin J., Lind A.E., van Eijk R., Schleper C., Cuy L. & Ettema T.J. G. 2015. Complex archaea that bridge the gap between prokaryotes and eukaryotes. Nature 521: 173–179.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Steinbüchel A. & Müller M. 1986. Anaerobic pyruvate metabolism of Tritrichomonas foetus and Trichomonas vaginalis hy-drogenosomes. Mol. Biochem. Parasitol. 20: 57–65.

    Article  PubMed  Google Scholar 

  • Tachezy J. 2008. Hydrogenosomes and Mitosomes: Mitochondria of Anaerobic Eukaryotes. Springer-Verlag, Heidelberg, Ger-many, 287 pp.

    Google Scholar 

  • Theissen U., Hoffmeister M., Grieshaber M. & Martin W. 2003. Single eubacterial origin of eukaryotic sulflde:quinone oxidoreductase, a mitochondrial enzyme conserved from the early evolution of eukaryotes during anoxic and sulfldic times. Mol. Biol. Evol. 20: 1564–1574.

    Article  CAS  PubMed  Google Scholar 

  • Tielens A.G.M. & Hellemond J.J. 2009. Surprising variety in energy metabolism within Trypanosomatidae. Trends Parasitol. 25: 482–490.

    Article  PubMed  Google Scholar 

  • Timmis J.N., Ayliffe M.A., Huang C.Y. & Martin W. 2004. Endosymbiotic gene transfer: organelle genomes forge eukaryotic chromosomes. Nat. Rev. Genet. 5: 123–135.

    Article  CAS  PubMed  Google Scholar 

  • Tovar J. 2007. Mitosomes of parasitic protozoa: biology and evolutionary signiflcance, pp. 277–280. In: Martin W.F. & Müller M. (eds), Origin of Mitochondria and Hydrogenosomes. Springer Berlin Heidelberg, Germany.

    Google Scholar 

  • Tovar J., Fischer A. & Clark C.G. 1999. The mitosome, a novel organelle related to mitochondria in the amitochondrial parasite Entamoeba histolytica. Mol. Microbiol. 32: 1013–1021.

    CAS  Google Scholar 

  • Tovar J., Leon-Avila G., Sanchez L.B., Sutak R., Tachezy J., van der Giezen M., Hernandez M., Müller M. & Lucocq J.M. 2003. Mitochondrial remnant organelles of Giardia function in ironsulphur protein maturation. Nature 426: 172–176.

    Article  CAS  PubMed  Google Scholar 

  • Tucci S., Proksch P. & Martin W. 2006. Fatty acid biosynthesis in mitochondria of Euglena gracüis, pp. 133–136. In: Benning C. & Ohlrogge J. (eds), Advances in Plant Lipid Research: Proceedings of the 17 International Symposium on Plant Lipids. East Lansing, Michigan, Michigan State University Press.

    Google Scholar 

  • van Grinsven K.W.A., Hellemond J.J. & Tielens A.G.M. 2009. Acetate:succinate CoA-transferase in the anaerobic mitochondria of Fasciola hepatica. Mol. Biochem. Parasitol. 164: 74–79.

    Article  CAS  Google Scholar 

  • Walker G., Dorrell R.G., Schlacht A. & Dacks J.B. 2011. Eukaryotic systematics: a user’s guide for cell biologists and parasitologists. J. Parasitol. 138: 1638–1663.

    Article  Google Scholar 

  • Whatley J.M., John P. & Whatley F.R. 1979. From extracellular to intracellular: the establishment of mitochondria and chloroplasts. Proc. R. Soc. Lond. B 204: 165–187.

    Article  CAS  PubMed  Google Scholar 

  • Williams B.A., Hirt R.P., Lucocq J.M. & Embley T.M. 2002. A mitochondrial remnant in the microsporidian Trachipleistophora hominis. Nature 418: 865–869.

    CAS  PubMed  Google Scholar 

  • Williams T.A. 2014. Evolution: rooting the eukaryotic tree of life. Curr. Biol. Dispatches 24: R151–R152.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shamik Dasgupta.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dasgupta, S. Mitochondrial clock: moderating evolution of early eukaryotes in light of the Proterozoic oceans. Biologia 71, 843–852 (2016). https://doi.org/10.1515/biolog-2016-0117

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1515/biolog-2016-0117

Key words

Navigation