Skip to main content
Log in

Improvement of uricase production from Bacillus subtilis RNZ-79 by solid state fermentation of shrimp shell wastes

  • Published:
Biologia Aims and scope Submit manuscript

Abstract

Among various strains of Bacillus subtilis, the strain RNZ-79 was selected for this study due to the highest uricase productivity in solid state cultures containing shrimp shell wastes, highest Vmax (0.42 μM mg−1min−1) and lowest value of Km (56 μM). Maximum productivity was observed at pH 7.6 and 45°C with an inducer concentration of 0.4% (w/v) uric acid and moisture content of 80% (v/w). An inoculum of 7% (v/v) and particle size of 354–500 μm for substrate were optimal for productivity after 54 h of fermentation. None of the tested carbon and inorganic nitrogen sources had stimulatory effect on uricase productivity. KH2PO4 at 0.12% (w/v) was the best source of phosphorus. Final uricase productivity was 5.05-fold more than the initial productivity. Enzyme purification increased the specific activity to 25-fold with a recovery of 36%. Furthermore, the purified enzyme showed a molecular mass of 33.7 kDa. Purified uricase was optimally active at pH 8.0 and 40°C and maximally stable at pH 7.0–10.0 and till 70°C for 30 min. The half-life (t1/2) at 60, 70, 80, 90 and 100°C were 87.0, 56.6, 30.0, 24.2 and 15.6 min, respectively, and the calculated midpoint temperature (Tm) was 66.85°C. Interestingly, purified enzyme exhibited a good storage stability for 3 months and none of uric acid analogues were competitive inhibitor, indicating a high specificity of uricase.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

CB:

corn bran

LSCs:

liquid state cultures

LSF:

liquid state fermentation

RB:

rice bran

SBP:

soybean powder

SSCs:

solid state cultures

SSF:

solid state fermentation

SSP:

shrimp shell powder

WB:

wheat bran

References

  • Abd El Fattah Y., Saeed H., Gohar Y. & El-Baz M. 2005. Improved production of Pseudomonas aeruginosa uricase by optimization of process parameters through statistical experimental designs. Process Biochem. 40: 1707–1714.

    Article  CAS  Google Scholar 

  • Abdel-Fattah G. & Abo-Hamed N. 2002. Bioconversion of poultry wastes I-factors influencing the assay and productivity of crude uricase by three uricolytic filamentous fungi. New Microbiol. 25: 57–64.

    Google Scholar 

  • Adámek V., Králová B., Suchová M., Valentová O. & Demnerová K. 1989. Purification of microbial uricase. J. Chromatogr. 497: 268–275.

    Article  PubMed  Google Scholar 

  • Adámek V., Suchová M., Demnerová K., Králová B., Fořt I. & Morava P. 1990. Fermentation of Candida utilis for uricase production. J. Ind. Microbiol. 6: 85–90.

    Article  Google Scholar 

  • Alamillo J., Cardenas J. & Pineda M. 1991. Purification and molecular properties of urate oxidase from Chlamydomonas reinhardtii. Biochim. Biophys. Acta 1076: 20–208.

    Article  Google Scholar 

  • Anderson A. & Vijayakumar S. 2011. Purification and optimization of uricase enzyme produced by Pseudomonas aeruginosa. J. Exp. Sci. 2: 5–8.

    CAS  Google Scholar 

  • Bailey W., Scott E., Finegold S. & Baron E. 1986. Bailey and Scott’s Diagnostic Microbiology. Mosby Co., USA.

    Google Scholar 

  • Baysal Z., Uyar F. & Aytekin C. 2003. Solid state fermentation for production of α-amylase by a thermotolerant Bacillus subtilis from hot-spring water. Process Biochem. 38: 1665–1668.

    Article  CAS  Google Scholar 

  • Bongaerts G., Uitzetter J., Brouns R. & Vogels G. 1978. Uricase of Bacillus fastidiosus. Properties and regulation of synthesis. Biochim. Biophys. Acta 527: 348–358.

    Article  CAS  PubMed  Google Scholar 

  • Brandenburg J., Wray L., Beier L., Jarmer H., Saxild H. & Fisher S. 2002. Roles of PucR, GInR, and TnrA in regulating expression of the Bacillus subtilis ure P3 promoter. J. Bacteriol. 84: 6060–6064.

    Article  CAS  Google Scholar 

  • Hassanein W., Kotb E., Awny N. & El-Zawahry Y. 2011. Fibrinolysis and anticoagulant potential of a metallo protease produced by Bacillus subtilis K42. J. Biosci. 36: 77–779.

    Article  CAS  Google Scholar 

  • Hibi T., Hayashi Y., Fukada H., Itoh T., Nago T. & Nishiya Y. 2014. Intersubunit salt bridges with a sulfate anion control subunit dissociation and thermal stabilization of Bacillus sp. TB-90 urate oxidase. Biochemistry 53: 3879–3888.

    Article  CAS  PubMed  Google Scholar 

  • Huang S. & Wu T. 2004. Modified colorimetric assay for uricase activity and a screen for mutant Bacillus subtilis uricase genes following StEP mutagenesis. Eur. J. Biochem. 271: 517–523.

    Article  CAS  PubMed  Google Scholar 

  • Ishikawa J., Yamashita A., Mikami Y., Hoshino Y., Kurita H., Hotta K., Shiba T. & Hattori M. 2004. The complete genomic sequence of Nocardia farcinica IFM 10152. Proc. Natl. Acad. Sci. USA 101: 14925–14930.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kai L., Ma X., Zhou X., Jia X., Li X. & Guo K. 2008. Purification and characterization of a thermostable uricase from Microbacterium sp. strain ZZJ4-1. World J. Microbiol. Biotechnol. 24: 401–406.

    Article  CAS  Google Scholar 

  • Kotb E. 2015a. Characterization of a thermostable uricase isolated from Bacillus firmus DWD-33 and its application for uric acid quantification in human serum. Protein Pept. Lett. 22: 402–409.

    Article  CAS  PubMed  Google Scholar 

  • Kotb E. 2015b. The biotechnological potential of subtilisin-like fibrinolytic enzyme from a newly isolated Lactobacillus plantarum KSK-II in blood destaining and antimicrobials. Biotechnol. Prog. 31: 316–324.

    Article  CAS  PubMed  Google Scholar 

  • Koyama Y., Ichikawa T. & Nakano E. 1996. Cloning, sequence analysis, and expression in Escherichia coli of the gene encoding the Candida utilis urate oxidase (uricase). J. Biochem. 120: 969–973.

    Article  CAS  PubMed  Google Scholar 

  • Krishna C. & Chandrasekaran M. 1996. Banana waste as substrate for a-amylase production by Bacillus subtilis (CBTK 106) under solid-state fermentation. Appl. Microbiol. Biotechnol. 46: 106–111.

    Article  CAS  Google Scholar 

  • Laemmli U. 1970. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227: 680–685.

    Article  CAS  PubMed  Google Scholar 

  • Liu J., Li G., Liu H. & Zhou X. 1994. Purification and properties of uricase from Candida sp. and its application in uric acid analysis in serum. Appl. Biochem. Biotechnol. 47: 57–63.

    Article  CAS  PubMed  Google Scholar 

  • Lonsane B., Saucedo-Castaneda G., Raimbault M., Roussos S., Viniegra-Gonzalez G., Ghildyal N., Ramakrishna M. & Krishnaiah M. 1992. Scale-up strategies for solid state fermentation systems. Process Biochem. 27: 259–273.

    Article  CAS  Google Scholar 

  • Lotfy W. 2008. Production of a thermostable uricase by a novel Bacillus thermocatenulatus strain. Bioresour. Technol. 99: 699–702.

    Article  CAS  PubMed  Google Scholar 

  • Lowry O., Rosebrough N., Farr A. & Randall R. 1951. Protein measurement with the Folin phenol reagent. J. Biol. Chem. 193: 265–275.

    CAS  PubMed  Google Scholar 

  • Montalbini P., Aguilar M. & Ineda M. 1999. Isolation and characterization of uricase from bean leaves and its comparison with uredospore enzyme. Plant Sci. 147: 139–147.

    Article  CAS  Google Scholar 

  • Nakagawa T., Mazzali M., Kang D., Sanchez-Lozada L., Herrera-Acosta J. & Johnson R. 2006. Uric acid - a uremic toxin? Blood Purif. 24: 67–70.

    Article  CAS  PubMed  Google Scholar 

  • Nanda P. & Babu P. 2014. Isolation, screening and production studies of uricase producing bacteria from poultry sources. Prep. Biochem. Biotechnol. 44: 811–821.

    Article  CAS  PubMed  Google Scholar 

  • Pandey A., Selvakumar P., Soccol C. & Nigam P. 1999. Solid state fermentation for the production of industrial enzymes. Curr. Sci. 77: 149–162.

    CAS  Google Scholar 

  • Pandey A., Soccol C. & Larroche C. 2007. Current Developments in Solid-State Fermentation. Springer Science/Asiatech Publishers, New York, USA/New Delhi, India.

    Google Scholar 

  • Pfrimer P., de Moraes L., Galdino A., Salles L., Reis V., De Marco J., Prates M., Bloch C. & Torres F. 2010. Cloning, purification, and partial characterization of Bacillus subtilis urate oxidase expressed in Escherichia coli. Biomed. Biotechnol. 2010: 1–6.

    Article  CAS  Google Scholar 

  • Saeed H., Abdel-Fattah Y., Gohar Y. & Elbaz M. 2004. Purification and characterization of extracellular Pseudomonas aeruginosa urate oxidase enzyme. Pol. J. Microb. 53: 45–52.

    CAS  Google Scholar 

  • Schiavon O., Caliceti P., Ferruti P. & Veronese F. 2000. Therapeutic proteins: a comparison of chemical and biological properties of uricase conjugated to linear or branched poly (ethylene glycol) and poly(N-acryloylmorpholine). Farmaco 55: 264–269.

    Article  CAS  PubMed  Google Scholar 

  • Schultz C., Nygaard P. & Saxild H. 2001. Functional analysis of 14 genes that constitute the purine catabolic pathway in Bacillus subtilis and evidence for a novel regulon controlled by the PucR transcription activator. J. Bacteriol. 183: 329–3302.

    Article  Google Scholar 

  • Suzuki K., Sakasegawa, S., Misaki H. & Sugiyamac M. 2004. Molecular cloning and expression of uricase gene from Arthrobacter globiformis in Escherichia coli and characterization of the gene product. J. Biosci. Bioeng. 98: 15–158.

    Article  Google Scholar 

  • Swan D., Hale R., Dhillon N. & Leadlay P. 1987. A bacterial calcium-binding protein homologous to calmodulin. Nature 329: 84–85.

    Article  CAS  PubMed  Google Scholar 

  • Tanaka A., Yamamura M., Kawamoto S. & Fukui S. 1977. Production of uricase by Candida tropicalis using n-alkane as substrate. Appl. Environ. Microbiol. 34: 342–346.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wallrath L. & Friedman T. 1991. Species differences in the temporal pattern of Drosophila urate oxidase gene expression are attributed to transacting regulatory changes. Proc. Natl. Acad. Sci. USA 88: 5489–5493.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Werner A. & Witte C. 2011. The biochemistry of nitrogen mobilization: purine ring catabolism. Trends Plant Sci. 16: 381–387.

    Article  CAS  PubMed  Google Scholar 

  • Yamamoto K., Kojima Y., Kikuchi T., Shigyo T., Sugihara K., Takashio M. & Emi S. 1996. Nucleotide sequence of the uri-case gene from Bacillus sp. TB-90. J. Biochem. 119: 80–84.

    Article  CAS  PubMed  Google Scholar 

  • Yazdi M., Zarrini G., Mohit E., Faramarzi M., Setayesh N., Sedighi N. & Mohseni F. 2006. Mucor hiemalis: a new source for uricase production. World J. Microbiol. Biotechnol. 22: 325–330.

    Article  CAS  Google Scholar 

  • Yokoyama S., Ogawa A. & Obayashi A. 1988. Rapid extraction of uricase from Candida utilis cells by use of reducing agent plus surfactant. Enzyme Microb. Technol. 10: 52–55.

    Article  CAS  Google Scholar 

  • Zhao Y., Zhao L., Yang G., Tao J., Bu Y. & Liao F. 2006. Characterization of a uricase from Bacillus fastidious A.T.C.C. 26904 and its application to serum uric acid assay by a patented kinetic uricase method. Biotechnol. Appl. Biochem. 45: 75–78.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Essam Kotb.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kotb, E. Improvement of uricase production from Bacillus subtilis RNZ-79 by solid state fermentation of shrimp shell wastes. Biologia 71, 229–238 (2016). https://doi.org/10.1515/biolog-2016-0040

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1515/biolog-2016-0040

Key words

Navigation