Skip to main content
Log in

Effects of low-temperature hardening on the biochemical response of winter oilseed rape seedlings inoculated with the spores of Leptosphaeria maculans

  • Published:
Biologia Aims and scope Submit manuscript

Abstract

The aim of the study was to assess the effects of low-temperature hardening (2°C) on the biochemical compounds and processes that can increase resistance of winter rape to inoculation with Leptosphaeria maculans spores. The study involved an evaluation of the entire pool of phenolic compounds, L-phenylalanine ammonia lyase (PAL) activity, excitation intensity for blue and green fluorescence, catalase (CAT) activity, respiration intensity and heat emission from leaf tissues. All the measurements were performed 24 and 72 hours after the inoculation. Low-temperature hardening, which preceded the inoculation of rape seedlings with spores of L. maculans, caused a significant increase in CAT activity and the level of phenolic compounds. The observed changes in PAL activity reflected the changes in phenolics content. The hardened plants showed a significantly higher intensity of blue fluorescence excitation at 24 and 72 hours after the inoculation, as compared to the non-hardened seedlings. Increased content of phenolic compounds and PAL and catalase activity triggered by the temperature of 2 °C and maintained for 24 hours after the inoculation, may confirm the stimulating effect of the hardening temperature. Intensified emission of blue fluorescence indicating saturation of a cell wall with phenolic compounds makes the cell wall structure less stretchy, more tight and leakproof, and thereby hinders fungal growth through plant tissue.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

CAT:

catalase

F430:

blue fluorescence

F520:

green fluorescence

HE:

heat emission

LWC:

leaf water content

PAL:

phenylalanine ammonia lyase

PPFD:

photosynthetic photon flux density

Raw4:

isolate of L. maculans

RI:

respiration intensity

ROS:

reactive oxygen species

SPh:

soluble phenolics

References

  • Aebi H. 1984. Catalase in vitro. Methods Enzymol. 105: 121–126.

    Article  CAS  PubMed  Google Scholar 

  • Anekonda T.S., Criddle R.S. & Libby W.J. 1994. Calorimetric evidence for site-adapted biosynthetic metabolism in coast redwood. Can. J. Forest Res. 24: 380–389.

    Article  Google Scholar 

  • Atkinson N.J. & Urwin P.E. 2012. The interaction of plant biotic and abiotic stresses: from genes to the field. J. Exp. Bot. 63: 3523–3543.

    Article  CAS  PubMed  Google Scholar 

  • Baena-González E. & Sheen J. 2008. Convergent energy and stress signaling. Trends Plant Sci. 13: 474–482.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Baker C.J., Mock N.M., Deahl K. & Domek J. 1997. Monitoring the rate of oxygen consumption in plant cell suspensions. Plant Cell Tissue Organ Cult. 51: 111–117.

    Article  Google Scholar 

  • Balesdent M.H., Jędryczka M., Jain L., Mendes-Pereira E., Bertrandy J. & Rouxel T. 1998. Conidia, substrate for internal transcribed spacer-based PCR identification of component of the Leptosphaeria maculans species complex. Phytopathology 88: 12–17.

    Article  Google Scholar 

  • Ben Hamed K., Chibani F., Abdelly C. & Magne C. 2014. Growth, sodium uptake and antioxidant responses of coastal plants differing in their ecological status under increasing salinity. Biologia 69: 193–201.

    Article  CAS  Google Scholar 

  • Bradford M. 1976. A rapid and sensitive method for the quantitation of microgram quantitaties of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72: 248–254.

    Article  CAS  PubMed  Google Scholar 

  • Criddle R.S., Fontana A.J., Rank D.R., Paige D., Hansen L.D. & Breidenbach R.W. 1991. Simultaneous measurement of metabolic heat rate, CO2 production, and O2 consumption by microcalorimetry. Anal. Biochem. 194: 413–417.

    Article  CAS  PubMed  Google Scholar 

  • Davar R., Darvishzadeh R. & Majd A. 2013. Changes in antioxidant systems in sunflower partial resistant and susceptible lines as affected by Sclerotinia sclerotiorum. Biologia 68: 821–829.

    Article  CAS  Google Scholar 

  • De Ascensao A.R.F.D.C. & Dubery LA. 2003. Soluble and wall-bound phenolics and phenolic polymers in Musa acuminata roots exposed to elicitors from Fusarium oxysporum, f.sp. cubense. Phytochemistry 63: 679–686.

    Article  PubMed  CAS  Google Scholar 

  • De Gara L., de Pinto M.C. & Tommasi F. 2003. The antioxidant systems vis-f-vis reactive oxygen species during plantpathogen interaction. Plant Physiol. Biochem. 41: 863–870.

    Article  CAS  Google Scholar 

  • El Modafar C. & El Boustani E. 2001. Cell wall-bound phenolic acid and lignin contents in date palm as related to its resistance to Fusarium, oxysporum,. Biol. Plantarum 44: 125–130.

    Article  Google Scholar 

  • Ergon A. & Tronsmo A.M. 2006. Components of pink snow mould resistance in winter wheat are expressed prior to cold hardening and in detached leaves. J. Phytopathol. 154: 134–142.

    Article  Google Scholar 

  • Fitt B.D.L., Brun H., Barbetti M.J. & Rimmer S.R. 2006. Worldwide importance of phoma stem canker (Leptosphaeria maculans and L. biglobosa) on oilseed rape (Brassica napus). Eur. J. Plant Pathol. 114: 3–15.

    Article  Google Scholar 

  • Fornalé S., Lopez E., Salazar-Henao J.E., Fernández-Nohales P., Rigau J. & Caparros-Ruiz D. 2014. AtMYB7, a new player in the regulation of UV-sunscreens in Arabidopsis thaliana. Plant Cell Physiol. 55: 507–516.

    Article  PubMed  CAS  Google Scholar 

  • Friedt W. & Snowdon R. 2009. Oilseed rape, pp. 91–126. In: Vollmann J. & Rajcanpp I. (eds), Oil Crops, Handbook of Plant Breeding 4, Springer, Dordrecht, Heidelberg, London, New York.

  • Fry S.C. 1982. Phenolic components of the primary cell wall. Biochem. J. 203: 493–504.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fry S.C. 1987. Intercellular feruloylation of pectic polysaccharides. Planta 171: 205–211.

    Article  CAS  PubMed  Google Scholar 

  • Gomes M.P. & Garcia Q.S. 2013. Reactive oxygen species and seed germination. Biologia 68: 351–357.

    CAS  Google Scholar 

  • Gugel R.K. & Petrie G.A. 1992. History, occurrence, impact, and control of blackleg of rapeseed. Can. J. Plant Pathol. 14: 36–45.

    Article  Google Scholar 

  • Hura K., Hura T., Bączek-Kwinta R., Grzesiak M. & Płażek A. 2014a. Induction of defense mechanisms in seedlings of oilseed winter rape inoculated with Phoma lingam (Leptosphaeria maculans). Phytoparasitica 42: 145–154.

    Article  CAS  Google Scholar 

  • Hura K., Hura T., Dziurka K. & Dziurka M. 2014b. Biochemical defense mechanisms induced in winter oilseed rape seedlings with different susceptibility to infection with Leptosphaeria maculans. Physiol. Mol. Plant Pathol. 87: 42–50.

    Article  CAS  Google Scholar 

  • Hura K., Hura T., Dziurka K., Dziurka M. 2015. Carbohydrate, phenolic and antioxidant level in relation to chlorophyll a content in oilseed winter rape (Brassica napus L.) inoculated with Leptosphaeria maculans. Eur. J. Plant Pathol, (in press) DOI: 10.1007/s10658-015-0680-1.

    Google Scholar 

  • Hura K., Hura T. & Grzesiak M. 2014c. Function of the photo-synthetic apparatus of oilseed winter rape under elicitation by Phoma lingam phytotoxins in relation to carotenoid and phenolic levels. Acta Physiol. Plant. 36: 295–305.

    Article  CAS  Google Scholar 

  • Hura K., Hura T., Grzesiak M. & Rapacz M. 2014d. Early detection of Phoma lingam infection in oilseed winter rape before visible symptoms appear. Acta Biol. Cracov. Ser. Bot. 56: 59–65.

    CAS  Google Scholar 

  • Hura T., Hura K., Dziurka K., Ostrowska A., Bączek-Kwinta R. & Grzesiak M.T. 2012. An increase in the content of cell wall-bound phenolics correlates with the productivity of triticale under soil drought. J. Plant Physiol. 169: 1728–1736.

    Article  CAS  PubMed  Google Scholar 

  • Hura T., Hura K., Ostrowska A., Grzesiak M. & Dziurka K. 2013. The cell wall-bound phenolics as a biochemical indicator of soil drought resistance in winter triticale. Plant Soil Environ. 59: 189–195.

    Article  CAS  Google Scholar 

  • Jesus C., Meijón M., Monteiro P., Correia B., Amaral J., Escandón M., Cañal M.J. & Pinto G. 2015. Salicylic acid application modulates physiological and hormonal changes in Eucalyptus globulus under water deficit. Environ. Exp. Bot. 118: 56–66.

    Article  CAS  Google Scholar 

  • Jędryczka M., Rouxel T., Balesdent M.H., Mendes Pereira E. & Bertrandy J. 1997. Molecular characterization of Polish Phoma lingam isolates. Cereal Res. Commun. 25: 279–283.

    Google Scholar 

  • Kamisaka S., Takeda S., Takahashi K. & Shibata K. 1990. Diferulic and ferulic acid in the cell wall of Avena coleoptiles: their relationships to mechanical properties of the cell wall. Physiol. Plant. 78: 1–7.

    Article  CAS  Google Scholar 

  • Lang M., Lichtenthaler H.K., Sowinska M., Summ P. & Heisel F. 1994. Blue, green and red fluorescence signatures and images of tobacco leaves. Plant Biol. 107: 230–236.

    Google Scholar 

  • Lang M., Siffel P., Braunova Z. & Lichtenthaler H.K. 1992. Investigations of the blue-green fluorescence emission of plant leaves. Plant Biol. 105: 435–440.

    Google Scholar 

  • Lichtenthaler H.K. & Schweiger J. 1998. Cell wall bound ferulic acid, the major substance of the blue-green ?uorescence emission of plants. J. Plant Physiol. 152: 272–282.

    Article  CAS  Google Scholar 

  • Mandal S., Mitra A. & Mallick N. 2009. Time course study on accumulation of cell wall-bound phenolics and activities of defense enzymes in tomato roots in relation to Fusarium, wilt. World J. Microbiol. Biotechnol. 25: 795–802.

    Article  CAS  Google Scholar 

  • Mittler R. 2002. Oxidative stress, antioxidants and stress tolerance. Trends Plant Sci. 7: 405–410.

    Article  CAS  PubMed  Google Scholar 

  • Payri R., Salvador F.J., Gimeno J. & Bracho G. 2011. The effect of temperature and pressure on thermodynamic properties of diesel and biodiesel fuels. Fuel 90: 1172–1180.

    Article  CAS  Google Scholar 

  • Peltonen S. & Karjalainen R. 1995. Phenylalanine ammonia-lyase activity in barley after infection with Bipolaris sorokiniana or treatment with its purified xylanase. J. Phytopathol. 143: 239–245.

    Article  CAS  Google Scholar 

  • Płażek A., Dubert F. & Marzec K. 2009. Cell membrane permeability and antioxidant activities in the rootstocks of Miscanthus x giganteus as an effect of cold and frost treatment. J. Appl. Bot. Food Qual. 82: 158–162.

    Google Scholar 

  • Płażek A., Hura K. & Żur I. 2003a. Reaction of winter oilseed rape callus to different concentrations of elicitors: pectinase or chitosan. Acta Physiol. Plant. 25: 83–89.

    Article  Google Scholar 

  • Płażek A., Hura K., Żur I. & Niemczyk E. 2003b. Relationship between frost tolerance and cold-induced resistance of spring barley, meadow fescue and winter oilseed rape to fungal pathogens. J. Agron. Crop Sci. 189: 333–340.

    Article  Google Scholar 

  • Płażek A. & Rapacz M. 2000. The intensity of respiration and heat emission from seedlings of Festuca pratensis (Hud.) and Hordeum, vulgare L. during pathogenesis caused by Bipolaris sorokiniana (Sacc.) Shoem. Acta Physiol. Plant. 22: 25–30.

    Article  Google Scholar 

  • Płażek A. & Żur I. 2003. Cold-induced plant resistance to necrotrophic pathogens and antioxidant enzyme activities and cell membrane permeability. Plant Sci. 164: 1019–1028.

    Article  CAS  Google Scholar 

  • Rapacz M. 1998. The after-effects of temperature and irradiance during early growth of winter oilseed rape (Brassica napus L. var. oleifero, cv. Gárczański) seedlings on the progress of their cold acclimation. Acta Physiol. Plant. 20: 73–78.

    Article  Google Scholar 

  • Rapacz M. 2002. Cold-deacclimation of oilseed rape (Brassica napus var. oleifero) in response to fluctuating temperatures and photoperiod. Ann. Bot. 89: 543–549.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Reyes E. & Jennings P.H. 1997. Effects of chilling on respiration and induction of cyanide-resistant respiration in seedling roots of cucumber. J. Amer. Soc. Hort. Sci. 122: 190–194.

    Article  Google Scholar 

  • Schopfer P. 1996. Hydrogen peroxide-mediated cell-wall stiffening in vitro in maize coleoptiles. Planta 199: 43–49.

    Article  CAS  Google Scholar 

  • Schweiger J., Lang M. & Lichtenthaler H.K. 1996. Differences in fluorescence excitation spectra of leaves between stressed and non-stressed plants. J. Plant Physiol. 148: 536–547.

    Article  CAS  Google Scholar 

  • Singleton V.S. & Rossi J.A., Jr. 1965. Colorimetry of total phenolics with phosphomolybdic-phosphotungstic acid reagent. Amer. J. Enol. Viticult. 16: 144–157.

    CAS  Google Scholar 

  • Solecka D., Boudet A.M. & Kacperska A. 1999. Phenylpropanoid and anthocyanin changes in low-temperature treated winter oilseed rape leaves. Plant Physiol. Biochem. 37: 491–496.

    Article  CAS  Google Scholar 

  • Solecka D. & Kacperska A. 2003. Phenylpropanoid deficiency affects the course of plant acclimation to cold. Physiol. Plant. 119: 253–262.

    Article  CAS  Google Scholar 

  • Stefanowska M., Kuraś M. & Kacperska A. 2002. Low temperature-induced modifications in cell ultrastructure and localization of phenolics in winter oilseed rape (Brassica napus L. var. oleifero, L.) leaves. Ann. Bot. 90: 637–645.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Suzuki N. & Mittler R. 2006. Reactive oxygen species and temperature stresses: A delicate balance between signaling and destruction. Physiol. Plant. 126: 45–51.

    Article  CAS  Google Scholar 

  • Trillas M.I. & Azcon-Bieto J. 1995. Short- and long-term effects of Fusarium, oxysporum, elicitors on respiration of carnation callus. Plant Physiol. Biochem. 33: 47–53.

    CAS  Google Scholar 

  • Tronsmo A.M. 1984. Resistance to the rust fungus Puccinia poae-nemoralis in Poa pratensis induced by low-temperature hardening. Can. J. Bot. 62: 2891–2892.

    Article  Google Scholar 

  • Truesdale G.A. & Downing A.L. 1954. Solubility of oxygen in water. Nature 173: 1236.

  • Wakabayashi K., Hoson T. & Kamisaka S. 1997. Osmotic stress suppresses cell wall stiffening and the increase in cell wallbound ferulic and diferulic acids in wheat coleoptiles. Plant Physiol. 113: 967–973.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • West J.S., Kharbanda P.D., Barbetti M.J. & Fitt B.D.L. 2001. Epidemiology and management of Leptosphaeria maculans (phoma stem canker) on oilseed rape in Australia, Canada and Europe. Plant Pathol. 50: 10–27.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Katarzyna Hura.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hura, K., Hura, T., Rapacz, M. et al. Effects of low-temperature hardening on the biochemical response of winter oilseed rape seedlings inoculated with the spores of Leptosphaeria maculans. Biologia 70, 1011–1018 (2015). https://doi.org/10.1515/biolog-2015-0129

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1515/biolog-2015-0129

Key words

Navigation