Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter November 16, 2021

Prospects for the production of radioisotopes and radiobioconjugates for theranostics

  • Jarosław Choiński EMAIL logo and Monika Łyczko EMAIL logo

Abstract

The development of diagnostic methods in medicine as well as the progress in the synthesis of biologically active compounds allows the use of selected radioisotopes for the simultaneous diagnosis and treatment of diseases, especially cancerous ones, in patients. This approach is called theranostic. This review article includes chemical and physical characterization of chosen theranostic radioisotopes and their compounds that are or could be useful in nuclear medicine.


Corresponding authors: Jarosław Choiński, Heavy Ion Laboratory, University of Warsaw, Warsaw, Poland, E-mail: ; and Monika Łyczko, Institute of Nuclear Chemistry and Technology, Warsaw, Poland, E-mail:

Funding source: National Science Centre, Poland

Award Identifier / Grant number: 2020/04/X/ST4/01003

Funding source: University of Warsaw

Award Identifier / Grant number: PBS3/A9/28/2015

Acknowledgments

The authors would like to thank prof. Aleksander Bilewicz for valuable comments on this paper.

  1. Research funding: This work was realized in the framework of the National Science Centre, Poland, MINIATURA-4 grant no. 2020/04/X/ST4/01003. Also was funded by the Heavy Ion Laboratory at the University of Warsaw and partially by the National Center for Research and Development – Agreement No. PBS3/A9/28/2015, “The development of methods for production of new radiopharmaceuticals based on Sc radionuclides used in positron tomography (PET), PET-SKAND”.

  2. Author contributions: All authors have substantial contribution to the conception of the work and in drafting the paper. All authors approved of the submitted version and have accepted responsibility for the entire content of this manuscript.

  3. Competing interests: Authors state no conflict of interest.

  4. Informed consent: Not applicable.

  5. Ethical approval: Not applicable.

References

1. Yordanova, A, Eppard, E, Kürpig, S, Bundschuh, RA, Schönberger, S, Gonzalez-Carmona, M, et al.. Theranostics in nuclear medicine practice. OncoTargets Ther 2017;10:4821–8. https://doi.org/10.2147/ott.s140671.Search in Google Scholar

2. Gottschalk, A, McCormack, KR, Adams, JE, Anger, HO. A comparison of results of brain scanning using Ga68-EDTA and the positron scintillation camera, with Hg203-neohydrin and the conventional focused collimator scanner. Radiology 1965;84:502–6. https://doi.org/10.1148/84.3.502.Search in Google Scholar

3. Chakravarty, R, Chakraborty, S, Ram, R, Vatsa, R, Bhusari, P, Shukla, J, et al.. Detailed evaluation of different 68Ge/68Ga generators: an attempt toward achieving efficient 68Ga radiopharmacy. J Label Compd Radiopharm 2015;59:87–94.10.1002/jlcr.3371Search in Google Scholar PubMed

4. Van der Meulen, NP, Dolley, SG, Steyn, GF, van der Walt, TN, Raubenheimer, HG. The use of selective volatilization in the separation of 68Ge from irradiated Ga targets. Appl Radiat Isot 2011;69:727–31. https://doi.org/10.1016/j.apradiso.2011.01.028.Search in Google Scholar

5. Rösch, F. Maturation of a key resource – the germanium-68/gallium-68 generator: development and new insights. Curr Rad 2012;5:202–11.10.2174/1874471011205030202Search in Google Scholar PubMed

6. Abbasi, AA, Easwaramoorthy, B. Method and system for producing gallium-68 radioisotope by solid targeting in a cyclotron. Patent WO2016197084A1, 2016.Search in Google Scholar

7. Alnahwi, A, Tremblay, S, Ait-Mohand, S, Beaudoin, J-F, Guerin, B. Large-scale routine production of 68Ga using 68Zn-pressed target. J Nucl Med 2019;60:109014.Search in Google Scholar

8. Oehlke, E, Hoehr, C, Hou, X, Hanemaayer, V, Zeisler, S, Adam, MJ, et al.. Production of Y-86 and other radiometals for research purposes using a solution target system. Nucl Med Biol 2015;42:842–9. https://doi.org/10.1016/j.nucmedbio.2015.06.005.Search in Google Scholar

9. Alves, V, do Carmo, S, Alves, F, Abrunhosa, A. Automated purification of radiometals produced by liquid targets. Instruments 2018;2:17. https://doi.org/10.3390/instruments2030017.Search in Google Scholar

10. Jensen, M, Clark, J. Direct production of Ga-68 from bombardment of concentrated aqueous solutions of [Zn-68] zinc chloride. In: Proceedings of the 13th international workshop on targetry and target chemistry. Riso National Laboratory for Sustainable Energy, Roskilde, Denmark; 2011: 288–90 pp.Search in Google Scholar

11. Pandey, MK, Byrne, JF, Schlasner, KN, Schmit, NR, DeGrado, TR. Cyclotron production of 68Ga in a liquid target: effects of solution composition and irradiation parameters. Nucl Med Biol 2019;74–75:49–55. https://doi.org/10.1016/j.nucmedbio.2019.03.002.Search in Google Scholar

12. Pagani, M, Stone-Elander, S, Larsson, S. Alternative positron emission tomography with non-conventional positron emitters: effects of their physical properties on image quality and potential clinical applications. Eur J Nucl Med 1997;24:1301–27. https://doi.org/10.1007/s002590050156.Search in Google Scholar

13. Kilian, K. 68Ga-DOTA and analogs: current status and future perspectives. Rep Practical Oncol Radiother 2014;19:S13–21. https://doi.org/10.1016/j.rpor.2014.04.016.Search in Google Scholar

14. Notni, J, Hermann, P, Havlickova, J, Kotek, J, Kubicek, V, Plutnar, J, et al.. A triazacyclononane-based bifunctional phosphinate ligand for the preparation of multimeric 68Ga tracers for positron emission tomography. Chemistry 2010;16:7174–85. https://doi.org/10.1002/chem.200903281.Search in Google Scholar

15. Notni, J, Plutnar, J, Wester, HJ. Bone-seeking TRAP conjugates: surprising observations and their implications on the development of gallium-68-labeled bisphosphonates. EJNMMI Res 2012;2:13. https://doi.org/10.1186/2191-219x-2-13.Search in Google Scholar

16. Notni, J, Pohle, K, Wester, HJ. Comparative gallium-68 labeling of TRAP-, NOTA-, and DOTA-peptides: practical consequences for the future of gallium-68-PET. EJNMMI Res 2012;2:28. https://doi.org/10.1186/2191-219x-2-28.Search in Google Scholar

17. Połosak, M, Piotrowska, A, Krajewski, S, Bilewicz, A. Stability of 47Sc-complexes with acyclic polyamino-polycarboxylate ligands. J Radioanal Nucl Chem 2013;295:1867–72. https://doi.org/10.1007/s10967-012-2188-x.Search in Google Scholar

18. Raj, N, Reidy-Lagunes, D. The Role of 68Ga-DOTATATE Positron Emission Tomography/Computed Tomography in well-differentiated neuroendocrine tumors: a case-based approach illustrates potential benefits and challenges. Pancreas 2018;47:1–5. https://doi.org/10.1097/mpa.0000000000000949.Search in Google Scholar

19. Hennrich, U, Benešová, M. [68Ga]Ga-DOTA-TOC: the first FDA-approved 68Ga-radiopharmaceutical for PET imaging. Pharmaceuticals 2020;13:38. https://doi.org/10.3390/ph13030038.Search in Google Scholar

20. Poeppel, TD, Binse, I, Petersenn, S, Lahner, H, Schott, M, Antoch, G, et al.. 68Ga-DOTATOC versus 68Ga-DOTATATE PET/CT in functional imaging of neuroendocrine tumors. J Nucl Med 2011;52:1864–70. https://doi.org/10.2967/jnumed.111.091165.Search in Google Scholar

21. Henze, M, Dimitrakopoulou-Strauss, A, Milker-Zabel, S, Schuhmacher, J, Strauss, LG, Doll, J, et al.. Characterization of 68Ga-DOTA-D-Phe1-Tyr3-octreotide kinetics in patients with meningiomas. J Nucl Med 2005;46:763–9.Search in Google Scholar

22. Syed, M. Qaim, Theranostic radionuclides: recent advances in production methodologies. J Radioanal Nucl Chem 2019;322:1257–66.10.1007/s10967-019-06797-ySearch in Google Scholar

23. Bartold, SP, Donohoe, KJ, Fletcher, JW, Haynie, TP, Henkin, RE, Silberstein, EB, et al.. Procedure guideline for gallium scintigraphy in the evaluation of malignant disease. Society of Nuclear Medicine. J Nucl Med 1997;38:990–4.Search in Google Scholar

24. Ziessman, H, O’Malley, J, Thrall, J. Nuclear medicine, 3rd ed. The requisites in radiology chapter 1 – radiopharmaceuticals; Philadelphia: Mosby; 2006:3–19 pp.10.1016/B978-0-323-02946-9.50006-4Search in Google Scholar

25. Othman, MF, Mitry, NR, Lewington, VJ, Blower, PJ, Terry, SY. Re-assessing gallium-67 as a therapeutic radionuclide. Nucl Med Biol 2017;46:12–8. https://doi.org/10.1016/j.nucmedbio.2016.10.008.Search in Google Scholar

26. Watanabe, N, Nakanishi, Y, Kinukawa, N, Ohni, S, Obana, Y, Nakazawa, A, et al.. Expressions of somatostatin receptor subtypes (SSTR-1, 2, 3, 4 and 5) in neuroblastic tumors; special reference to clinicopathological correlations with international neuroblastoma pathology classification and outcomes. Acta Histochem Cytoc 2014;47:219–29. https://doi.org/10.1267/ahc.14024.Search in Google Scholar

27. Majkowska-Pilip, A, Bilewicz, A. Macrocyclic complexes of scandium radionuclides as precursors for diagnostic and therapeutic radiopharmaceuticals. J Inorg Biochem 2011;105:313. https://doi.org/10.1016/j.jinorgbio.2010.11.003.Search in Google Scholar

28. Walczak, R, Krajewski, S, Szkliniarz, K, Sitarz, M, Abbas, K, Choiński, J, et al.. Cyclotron production of 43Sc for PET imaging. EJNMMI Phys 2015;2:33. https://doi.org/10.1186/s40658-015-0136-x.Search in Google Scholar

29. Szkliniarz, K, Jastrzębski, J, Bilewicz, A, Chajduk, E, Choiński, J, Jakubowski, A, et al.. Medical radioisotopes produced using the alpha particle beam from the Warsaw heavy Ion cyclotron. Acta Phys Pol, A 2015;127:1471–4. https://doi.org/10.12693/aphyspola.127.1471.Search in Google Scholar

30. Szkliniarz, K, Sitarz, M, Walczak, R, Jastrzębski, J, Bilewicz, A, Choiński, J, et al.. Production of medical Sc radioisotopes with an alpha particle beam. Appl Radiat Isot 2016;118:182–9. https://doi.org/10.1016/j.apradiso.2016.07.001.Search in Google Scholar

31. Minegishi, K, Nagatsu, K, Fukada, M, Suzuki, H, Ohya, T, Zhang, MR. Production of scandium-43 and -47 from a powdery calcium oxide target via the nat/44Ca(α,x)-channel. Appl Radiat Isot 2016;116:8–12. https://doi.org/10.1016/j.apradiso.2016.07.017.Search in Google Scholar

32. Domnanich, KA, Eichler, R, Muller, C, Jordi, S, Yakusheva, V, Braccini, S, et al.. Production and separation of 43Sc for radiopharmaceutical purposes. EJNMMI Radiopharm Chem 2017;2:14. https://doi.org/10.1186/s41181-017-0033-9.Search in Google Scholar

33. Müller, C, Domnanich, KA, Umbricht, CA, van der Meulen, NP. Scandium and terbium radionuclides for radiotheranostics: current state of development towards clinical application. Br J Radiol 2018;91:20180074. https://doi.org/10.1259/bjr.20180074.Search in Google Scholar

34. Roesch, F. Scandium-44: benefits of a long-lived PET radionuclide available from the 44Ti/44Sc generator system. Curr Rad 2012;5:187–201. https://doi.org/10.2174/1874471011205030187.Search in Google Scholar

35. Alliot, C, Audouin, N, Barbet, J, Bonraisin, AC, Bossé, V, Bourdeau, C, et al.. Is there an interest to use deuteron beams to produce non-conventional radionuclides? Front Med 2015;11:31. https://doi.org/10.3389/fmed.2015.00031.Search in Google Scholar

36. Duchemin, C, Guertin, A, Haddad, F, Michel, N, Métivier, V. Corrigendum: production of scandium-44m and scandium-44g with deuterons on calcium-44: cross section measurements and production yield calculations. Phys Med Biol 2015;60:6847–64. https://doi.org/10.1088/0031-9155/60/17/6847.Search in Google Scholar

37. Moskal, P, Stępień, EŁ. Prospects and clinical perspectives of total-body PET imaging using plastic scintillators. Pet Clin 2020;15:439–52. https://doi.org/10.1016/j.cpet.2020.06.009.Search in Google Scholar

38. Moskal, P, Kisielewska, D, Shopa, YR, Bura, Z, Chhokar, J, Curceanu, C, et al.. Performance assessment of the 2 γpositronium imaging with the total-body PET scanners. EJNMMI Phys 2020;7:44. https://doi.org/10.1186/s40658-020-00307-w.Search in Google Scholar

39. Moskal, P, Kisielewska, D, Curceanu, C, Czerwiński, E, Dulski, K, Gajos, A, et al.. Feasibility study of the positronium imaging with the J-PET tomograph. Phys Med Biol 2019;64:055017. https://doi.org/10.1088/1361-6560/aafe20.Search in Google Scholar

40. Moskal, P, Jasińska, B, Stępień, EŁ, Bass, SD. Positronium in medicine and biology. Nat Rev Phys 2019;1:527–9. https://doi.org/10.1038/s42254-019-0078-7.Search in Google Scholar

41. Severin, GW, Engle, JW, Valdovinos, HF, Barnhart, TE, Nickles, RJ. Cyclotron produced ⁴⁴gSc from natural calcium. Appl Radiat Isot 2012;70:1526–30. https://doi.org/10.1016/j.apradiso.2012.04.030.Search in Google Scholar

42. Sitarz, M, Szkliniarz, K, Jastrzębski, J, Choiński, J, Guertin, A, Haddad, F, et al.. Production of Sc medical radioisotopes with proton and deuteron beams. Appl Radiat Isot 2018;142:104–12. https://doi.org/10.1016/j.apradiso.2018.09.025.Search in Google Scholar

43. Krajewski, S, Cydzik, I, Abbas, K, Bulgheroni, A, Simonell, F, Holzwarth, U, et al.. Cyclotron production of 44Sc for clinical application. Radiochim Acta 2013;101:333. https://doi.org/10.1524/ract.2013.2032.Search in Google Scholar

44. Pruszyński, M, Majkowska-Pilip, A, Loktionova, NS, Eppard, E, Roesch, F. Radiolabeling of DOTATOC with the long-lived positron emitter 44Sc. Appl Radiat Isot 2012;70:974–9. https://doi.org/10.1016/j.apradiso.2012.03.005.Search in Google Scholar

45. Kilian, K, Cheda, Ł, Sitarz, M, Szkliniarz, K, Choiński, J, Stolarz, A. Separation of 44Sc from natural calcium carbonate targets for synthesis of 44Sc-DOTATATE. Molecules 2018;23:1787. https://doi.org/10.3390/molecules23071787.Search in Google Scholar

46. Carzaniga, TS, Braccini, S. Cross-section measurement of 44mSc,47Sc, 48Sc and 47Ca for an optimized 47Sc production with an 18 MeV medical PET cyclotron. Appl Radiat Isot 2019;143:18–23. https://doi.org/10.1016/j.apradiso.2018.10.015.Search in Google Scholar

47. Müller, C, Bunka, M, Haller, S, Köster, U, Groehn, V, Bernhardt, P, et al.. Promising prospects for 44Sc-/47Sc-based theranostics: application of 47Sc for radionuclide tumor therapy in mice. J Nucl Med 2014;55:1658–64.10.2967/jnumed.114.141614Search in Google Scholar PubMed

48. Domnanich, KA, Muller, C, Benešova, M, Dressler, R, Haller, S, Köster, U, et al.. 47Sc as useful β-emitter for the radiotheragnostic paradigm: a comparative study of feasible production routes. EJNMMI Radiopharm Chem 2017;2:5. https://doi.org/10.1186/s41181-017-0024-x.Search in Google Scholar

49. Rane, S, Harris, JT, Starovoitova, VN. 47Ca production for 47Ca/47Sc generator system using electron linacs. Appl Radiat Isot 2015;97:188–92. https://doi.org/10.1016/j.apradiso.2014.12.020.Search in Google Scholar

50. Kerdjoudj, R, Pniok, M, Alliot, C, Kubíček, V, Havlíčková, J, Rösch, F, et al.. Scandium(III) complexes of monophosphorus acid DOTA analogues: a thermodynamic and radiolabelling study with 44Sc from cyclotron and from a 44Ti/44Sc generator. Dalton Trans 2016;45:1398–409. https://doi.org/10.1039/c5dt04084a.Search in Google Scholar

51. Singh, A, van der Meulen, NP, Müller, C, Klette, I, Kulkarni, HR, Türler, A, et al.. First-in-human PET/CT imaging of metastatic neuroendocrine neoplasms with cyclotron-produced 44Sc-DOTATOC: a proof-of-concept study. Cancer Biother Radiopharm 2017;32:124–32. https://doi.org/10.1089/cbr.2016.2173.Search in Google Scholar

52. Van der Meulen, NP, Hasler, R, Talip, Z, Grundler, PV, Favaretto, C, Umbricht, CA, et al.. Developments toward the implementation of 44Sc production at a medical cyclotron. Molecules 2020;25:4706. https://doi.org/10.3390/molecules25204706.Search in Google Scholar

53. Filosofov, DV, Loktionova, NS, Rösch, F. A 44Ti/44Sc radionuclide generator for potential application of 44Sc-based PET-radiopharmaceuticals. Radiochim Acta 2010;98:149–56. https://doi.org/10.1524/ract.2010.1701.Search in Google Scholar

54. Pruszyński, M, Loktionova, NS, Filosofov, DV, Rösch, F. Post-elution processing of 44Ti/44Sc generator-derived 44Sc for medical application. Appl Radiat Isot 2010;68:1630–41.10.1016/j.apradiso.2010.04.003Search in Google Scholar PubMed

55. Mazza, M, Alliot, C, Sinquin, C, Colliec-Jouault, S, Reiller, PE, Huclier-Markai, S. Marine exopolysaccharide complexed with scandium aimed as theranostic agents. Molecules 2021;26:1143. https://doi.org/10.3390/molecules26041143.Search in Google Scholar

56. McCarthy, DW, Bass, LA, Cutler, PD, Shefer, RE, Klinkowstein, RE, Herrero, P, et al.. High purity production and potential applications of copper-60 and copper-61. Nucl Med Biol 1999;26:351–8. https://doi.org/10.1016/s0969-8051(98)00113-9.Search in Google Scholar

57. Obata, A, Kasamatsu, S, Mc Carthy, DW. Production of therapeutic quantities of 64Cu using a 12 MeV cyclotron. Nucl Med Biol 2003;30:535–9. https://doi.org/10.1016/s0969-8051(03)00024-6.Search in Google Scholar

58. Kozempel, J, Abbas, K, Simonelli, F, Zampese, M, Holzwarth, U, Gibson, N, et al.. A novel method for n.c.a. 64Cu production by the 64Zn(d,2p)64Cu reaction and dual ion-exchange column chromatography. Radiochim Acta 2007;95:75–80. https://doi.org/10.1524/ract.2007.95.2.75.Search in Google Scholar

59. Nickles, RJ. Production of a broad range of radionuclides with an 11 MeV proton cyclotron. J Label Compd Radiopharm 1991;30:120.Search in Google Scholar

60. Nickles, J, Abbas, K, Simonelli, F, Bulgheroni, A, Holzwarth, U, Gibson, N. Preparation of 67Cu via deuteron irradiation of 70Zn. Radiochim Acta 2012;100:419–23.10.1524/ract.2012.1939Search in Google Scholar

61. Ohya, T, Nagatsu, K, Suzuki, H, Fukada, M, Minegishi, K, Hanyu, M, et al.. Small-scale production of 67Cu for a preclinical study via the 64Ni(α,p)67Cu channel. Nucl Med Biol 2018;59:56–60. https://doi.org/10.1016/j.nucmedbio.2018.01.002.Search in Google Scholar

62. Denoyer, D, Masaldan, S, La Fontaine, S, Cater, M. Targeting copper in cancer therapy: ‘Copper that Cancer’. Metallomics 2015;7:1459–76. https://doi.org/10.1039/c5mt00149h.Search in Google Scholar

63. Shanbhag, VC, Gudekar, N, Jasmer, K, Papageorgiou, C, Singh, K, Petris, MJ. Copper metabolism as a unique vulnerability in cancer. Biochim Biophys Acta Mol Cell Res 2021;1868:118893. https://doi.org/10.1016/j.bbamcr.2020.118893.Search in Google Scholar

64. Boschi, A, Martini, P, Janevik-Ivanovska, E, Duatti, A. The emerging role of copper-64 radiopharmaceuticals as cancer theranostics. Drug Discov Today 2018;23:1489–501. https://doi.org/10.1016/j.drudis.2018.04.002.Search in Google Scholar

65. Jørgensen, JT, Persson, M, Madsen, J, Kjær, A. High tumor uptake of 64Cu: implications for molecular imaging of tumor characteristics with copper-based PET tracers. Nucl Med Biol 2013;40:345–50.10.1016/j.nucmedbio.2013.01.002Search in Google Scholar PubMed

66. Cutler, CS, Hennkens, HM, Sisay, N, Huclier-Markai, S, Jurisson, SS. Radiometals for combined imaging and therapy. Chem Rev 2013;13:858–83. https://doi.org/10.1021/cr3003104.Search in Google Scholar

67. Anderson, CJ, Ferdani, R. Copper-64 radiopharmaceuticals for PET imaging of cancer: advances in preclinical and clinical research. Cancer Biother Radiopharm 2009;24:379–93. https://doi.org/10.1089/cbr.2009.0674.Search in Google Scholar

68. Liu, T, Karlsen, M, Karlberg, AM, Redalen, KR. Hypoxia imaging and theranostic potential of [64Cu][Cu(ATSM)] and ionic Cu(II) salts: a review of current evidence and discussion of the retention mechanisms. EJNMMI Res 2020;9:33. https://doi.org/10.1186/s13550-020-00621-5.Search in Google Scholar

69. Ponnala, S, Amor-Coarasa, A, Kelly, J, Zia, N, Clarence, W, Nikolopoulou, A, et al.. A next generation theranostic PSMA ligand for 64Cu and67Cu-based prostate cancer imaging and therapy. J Nucl Med 2019;60(1 Suppl):1005.Search in Google Scholar

70. Gourni, E, Del Pozzo, L, Kheirallah, E, Smerling, C, Waser, B. Copper-64 labeled macrobicyclic sarcophagine coupled to a GRP receptor antagonist shows great promise for PET imaging of prostate cancer. Mol Pharm 2015;12:2781–90. https://doi.org/10.1021/mp500671j.Search in Google Scholar

71. Paterson, BM, Roselt, P, Denoyer, D, Cullinane, C, Binns, D, Noonan, W, et al.. PET imaging of tumours with a 64Cu labeled macrobicyclic cage amine ligand tethered to Tyr3-octreotate. Dalton Trans 2014;43:1386–96. https://doi.org/10.1039/c3dt52647j.Search in Google Scholar

72. McInnes, L, Zia, N, Cullinane, C, Van Zuylekom, J, Jackson, S, Stoner, J, et al.. A Cu-64/Cu-67 bifunctional PSMA ligand as a theranostic for prostate cancer. J Nucl Med 2020;61(1 Suppl):1215.Search in Google Scholar

73. Available from: https://clinicaltrials.gov/ct2/show/NCT04023331.Search in Google Scholar

74. Hao, G, Mastren, T, Silvers, W, Hassan, G, Öz, OK, Sun, X. Copper-67 radioimmunotheranostics for simultaneous immunotherapy and immuno-SPECT. Sci Rep 2021;11:3622. https://doi.org/10.1038/s41598-021-82812-1.Search in Google Scholar

75. Perk, LR, Visser, OJ, Stigter-van Walsum, M, Vosjan, MJ, Visser, GW, Zijlstra, JM, et al.. Preparation and evaluation of (89)Zr-Zevalin for monitoring of (90)Y-Zevalin biodistribution with positron emission tomography. Eur J Nucl Med Mol Imag 2006;33:1337–45. https://doi.org/10.1007/s00259-006-0160-0.Search in Google Scholar

76. Wiseman, GA, Witzig, TE. Yttrium-90 (90Y) ibritumomab tiuxetan (Zevalin) induces long-term durable responses in patients with relapsed or refractory B-Cell non-Hodgkin’s lymphoma. Cancer Biother Radiopharm 2005;20:185–8. https://doi.org/10.1089/cbr.2005.20.185.Search in Google Scholar

77. Selwyn, RG, Nickles, RJ, Thomadsen, BR, DeWerd, LA, Micka, JA. A new internal pair production branching ratio of 90Y: the development of a non-destructive assay for 90Y and 90Sr. Appl Radiat Isot 2007;65:318–27. https://doi.org/10.1016/j.apradiso.2006.08.009.Search in Google Scholar

78. Wright, CL, Zhang, J, Tweedle, MF, Knopp, MV, Hall, NC. Theranostic imaging of yttrium-90. BioMed Res Int 2015;2015:481279. https://doi.org/10.1155/2015/481279.Search in Google Scholar

79. Rösch, F, Qaim, SM, Stöcklin, G. Nuclear data relevant to the production of the positron emitting radioisotope 86Y via the 86Sr (p,n)- and natRb (3He, xn)- processes. Radiochim Acta 1993;61:1.10.1524/ract.1993.61.1.1Search in Google Scholar

80. Uddin, MS, Khandaker, MU, Kim, KS, Lee, YS, Lee, MW, Kim, GN. Excitation functions of the proton induced nuclear reactions on natural zirconium. Nucl Instrum Methods Phys Res B 2008;266:13. https://doi.org/10.1016/j.nimb.2007.10.010.Search in Google Scholar

81. Khandaker, MU, Kim, K, Lee, MW, Kim, KS, Kim, GN, Cho, YS, et al.. Experimental determination of proton-induced cross-sections on natural zirconium. Appl Radiat Isot 2009;67:1341. https://doi.org/10.1016/j.apradiso.2009.02.031.Search in Google Scholar

82. Szelecsényi, F, Steyn, GF, Kovács, Z, Vermeulen, C, Nagatsu, K, Zhang, M-R, et al.. Excitation functions of natZr + p nuclear processes up to 70 MeV: new measurements and compilation. Nucl Instrum Methods Phys Res B 2015;343:173.10.1016/j.nimb.2014.11.081Search in Google Scholar

83. Tárkányi, F, Ditrói, F, Takács, S, Hermanne, A, Al-Abyad, M, Yamazaki, H, et al.. New activation cross section data on longer lived radio-nuclei produced in proton induced nuclear reaction on zirconium. Appl Radiat Isot 2015;97:149.10.1016/j.apradiso.2014.12.029Search in Google Scholar

84. Rösch, F, Qaim, SM, Stöcklin, G. Production of the positron emitting radioisotope 86Y for nuclear medical application. Appl Radiat Isot 1993;44:677.10.1016/0969-8043(93)90131-SSearch in Google Scholar

85. Kandil, S, Scholten, B, Hassan, K, Hanafi, H, Qaim, S. A comparative study on the separation of radioyttrium from Sr-and Rb-targets via ion-exchange and solvent extraction techniques, with special reference to the production of no-carrier-added 86Y, 87Y and 88Y using a cyclotron. J Radioanal Nucl Chem 2009;279:823. https://doi.org/10.1007/s10967-008-7407-0.Search in Google Scholar

86. Aluicio-Sarduy, E, Hernandez, R, Valdovinos, HF, Kutyreff, CJ, Ellison, PA, Barnhart, TE, et al.. Simplified and automatable radiochemical separation strategy for the production of radiopharmaceutical quality 86Y using single column extraction chromatography. Appl Radiat Isot 2018;142:28. https://doi.org/10.1016/j.apradiso.2018.09.016.Search in Google Scholar

87. Nayak, TK, Brechbiel, MW. 86Y based PET radiopharmaceuticals: radiochemistry and biological applications. Med Chem 2011;7:380–8. https://doi.org/10.2174/157340611796799249.Search in Google Scholar

88. Kunikowska, J, Pawlak, D, Bąk, MI, Kos-Kudła, B, Mikołajczak, R, Królicki, L. Long-term results and tolerability of tandem peptide receptor radionuclide therapy with 90Y/177Lu-DOTATATE in neuroendocrine tumors with respect to the primary location: a 10-year study. Ann Nucl Med 2017;31:347–56. https://doi.org/10.1007/s12149-017-1163-6.Search in Google Scholar

89. Li, M, Sagastume, EA, Lee, D, McAlister, D, DeGraffenreid, AJ, Olewine, KR, et al.. 203/212Pb theranostic radiopharmaceuticals for image-guided radionuclide therapy for cancer. Curr Med Chem 2020;27:7003–31. https://doi.org/10.2174/0929867327999200727190423.Search in Google Scholar

90. Horlock, P, Thakur, M, Watson, I. Cyclotron produced lead-203. Postgrad Med 1975;51:751–4. https://doi.org/10.1136/pgmj.51.601.751.Search in Google Scholar

91. Laxdal, RE, Altman, A, Kuo, T. Beam measurements on a small commercial cyclotron. In: 4th European particle accelerator conference. London, UK: World Scientific; 1994:545 p.Search in Google Scholar

92. Azzam, A, Said, SA, Al-abyad, M. Evaluation of different production routes for the radio medical isotope 203Pb using TALYS 1.4 and EMPIRE 3.1 code calculations. Appl Radiat Isot 2014;91:109–13. https://doi.org/10.1016/j.apradiso.2014.05.009.Search in Google Scholar

93. McNeil, BL, Robertson, AKH, Fu, W, Yang, H, Hoehr, C, Ramogida, CF, et al.. Production, purification, and radiolabeling of the 203Pb/212Pb theranostic pair. EJNMMI Radiopharm Chem 2021;6:6. https://doi.org/10.1186/s41181-021-00121-4.Search in Google Scholar

94. Sgouros, G, Hobbs, RF. Dosimetry for radiopharmaceutical therapy. Semin Nucl Med 2014;44:172–8. https://doi.org/10.1053/j.semnuclmed.2014.03.007.Search in Google Scholar

95. Mirzadeh, S, Kumar, K, Gansow, OA. The chemical fate of 212Bi-DOTA formed by β- decay of 212Pb(DOTA)2-. Radiochim Acta 1993;60:1–10. https://doi.org/10.1524/ract.1993.60.1.1.Search in Google Scholar

96. Chappell, LL, Dadachova, E, Milenic, DE, Garmestani, K, Wu, C, Brechbiel, MW. Synthesis, characterization, and evaluation of a novel bifunctional chelating agent for the lead isotopes 203Pb and 212Pb. Nucl Med Biol 2000;27:93–100. https://doi.org/10.1016/s0969-8051(99)00086-4.Search in Google Scholar

97. Chang, SS. Overview of prostate-specific membrane antigen. Rev Urol 2004;6(10 Suppl):S13–8.Search in Google Scholar

98. Banerjee, SR, Minn, I, Kumar, V, Josefsson, A, Lisok, A, Brummet, M, et al.. Preclinical evaluation of 203/212Pb-labeled low-molecular-weight compounds for targeted radiopharmaceutical therapy of prostate cancer. J Nucl Med 2020;61:80–8. https://doi.org/10.2967/jnumed.119.229393.Search in Google Scholar

99. Miao, Y, Hylarides, M, Fisher, DR, Shelton, T, Moore, H, Wester, DW, et al.. Melanoma therapy via peptide-targeted α-radiation. Clin Cancer Res 2005;11:5616–21. https://doi.org/10.1158/1078-0432.ccr-05-0619.Search in Google Scholar

100. Miao, Y, Figueroa, SD, Fisher, DR, Moore, HA, Testa, RF, Hoffman, TJ, et al.. 203Pb-labeled alpha-melanocyte-stimulating hormone peptide as an imaging probe for melanoma detection. J Nucl Med 2008;49:823–9. https://doi.org/10.2967/jnumed.107.048553.Search in Google Scholar

101. Guo, H, Yang, J, Gallazzi, F, Miao, Y. Reduction of the ring size of radiolabeled lactam bridge-cyclized alpha-MSH peptide, resulting in enhanced melanoma uptake. J Nucl Med 2010;51:418–26. https://doi.org/10.2967/jnumed.109.071787.Search in Google Scholar

102. Tárkányi, F, Hermanne, A, Takács, S, Shubin, YN, Dityuk, AI. Cross sections for production of the therapeutic radioisotopes 198Au and 199Au in proton and deuteron induced reactions on 198Pt. Radiochim Acta 2004;92:223–8.10.1524/ract.92.4.223.35588Search in Google Scholar

103. Anderson, P, Vaughan, ATM, Varley, NR. Antibodies labeled with 199Au: potential of 199Au for radioimmunotherapy. Nucl Med Biol 1988;15:293–7. https://doi.org/10.1016/0883-2897(88)90109-2.Search in Google Scholar

104. Das, NR, Banerjee, K, Chatterjee, K, Lahiri, S. Separation of carrier-free 199Au as a β-decay product of 199Pt. Appl Radiat Isot 1999;50:643–7. https://doi.org/10.1016/s0969-8043(98)00115-8.Search in Google Scholar

105. Fazaeli, Y, Akhavan, O, Rahighi, R, Aboudzadeh, MR, Karimi, E, Afarideh, H. In vivo SPECT imaging of tumors by 198,199Au-labeled graphene oxide nanostructures. Mater Sci Eng C Mater Biol Appl 2014;45:196–204. https://doi.org/10.1016/j.msec.2014.09.019.Search in Google Scholar

106. Vimalnath, KV, Chakraborty, S, Dash, A. Reactor production of no-carrier-added 199Au for biomedical applications. RSC Adv 2016;6:82832–41. https://doi.org/10.1039/c6ra15407g.Search in Google Scholar

107. Khandaker, MU, Haba, H, Abu Kassim, H. Production of radio-gold 199Au for diagnostic and therapeutic applications. AIP Conf Proc 2016;1704:030008.10.1063/1.4940077Search in Google Scholar

108. Panchapakesan, B, Book-Newell, B, Sethu, P, Rao, M, Irudayaraj, J. Gold nanoprobes for theranostics. Nanomedicine 2011;6:1787–811. https://doi.org/10.2217/nnm.11.155.Search in Google Scholar

109. Aryal, S, Grailer, JJ, Pilla, S, Steeberb, DA, Gong, S. Doxorubicin conjugated gold nanoparticles as water-soluble and pH-responsive anticancer drug nanocarriers. J Mater Chem 2009;19:7879. https://doi.org/10.1039/b914071a.Search in Google Scholar

110. Żelechowska-Matysiak, K, Łyczko, M, Bilewicz, A, Majkowska-Pilip, A. Multimodal radiobioconjugate - trastuzumab-PEG-[Au-198]AuNPs-PEG-DOX for targeted radionuclide therapy of HER2-positive cancers. Nucl Med Biol 2021;96–97(S Suppl):S86.10.1016/S0969-8051(21)00407-8Search in Google Scholar

111. Shen, ZX, Chen, GQ, Ni, JH, Li, XS, Xiong, SM, Qiu, QY, et al.. Use of arsenic trioxide (As2O3) in the treatment of acute promyelocytic leukemia (APL): II. Clinical efficacy and pharmacokinetics in relapsed patients. Blood 1997;89:3354–60. https://doi.org/10.1182/blood.v89.9.3354.Search in Google Scholar

112. Kinjo, K, Kizaki, M, Muto, A, Fukuchi, Y, Umezawa, A, Yamato, K, et al.. Arsenic trioxide (As2O3)-induced apoptosis and differentiation in retinoic acid resistant acute promyelocytic leukemia model in hGM-CSF-producing transgenic SCID mice. Leukemia 2000;14:431–8. https://doi.org/10.1038/sj.leu.2401646.Search in Google Scholar

113. Dilda, PJ, Hogg, PJ. Arsenical-based cancer drugs. Cancer Treat Rev 2007;33:542–64. https://doi.org/10.1016/j.ctrv.2007.05.001.Search in Google Scholar

114. Jutoorua, I, Chadalapakaa, G, Sreevalsana, S, Leib, P, Barhoumic, R, Burghardtc, R, et al.. Arsenic trioxide downregulates specificity protein (Sp) transcription factors and inhibits bladder cancer cell and tumor growth. Exp Cell Res 2010;316:2174–88. https://doi.org/10.1016/j.yexcr.2010.04.027.Search in Google Scholar

115. (NNDC). National Nuclear Data Center; 2021. https://www.nndc.bnl.gov/nudat3/.Search in Google Scholar

116. Beard, HC. The radiochemistry of arsenic. Nuclear Science Series. Washington: National Academy of Sciences; 1960.Search in Google Scholar

117. Basile, D, Birattari, C, Bonardi, M, Goetz, L, Sabbioni, E, Salomone, A. Excitation functions and production of arsenic radioisotopes for environmental toxicology and biomedical purposes. Int J Appl Radiat Isot 1984;32:403–10. https://doi.org/10.1016/s0020-708x(81)81007-1.Search in Google Scholar

118. Phillips, DR. Chemistry and concept for an automated 72Se/72As generator. Patent No. 5,371,372, United States, 1994.Search in Google Scholar

119. DeGraffenreid, AJ, Medvedev, DG, Phelps, TE, Gott, MD, Smith, SV, Jurisson, SS, et al.. Cross-section measurements and production of 72Se with medium to high energy protons using arsenic containing targets. Radiochim Acta 2019;107:279–87. https://doi.org/10.1515/ract-2018-2931.Search in Google Scholar

120. Ellison, PA, Barnhart, TE, Chen, F, Hong, H, Zhang, Y, Theuer, CP, et al.. High yield production and radiochemical isolation of isotopically pure arsenic-72 and novel radioarsenic labeling strategies for the development of theranostic radiopharmaceuticals. Bioconjugate Chem 2016;27:179–88. https://doi.org/10.1021/acs.bioconjchem.5b00592.Search in Google Scholar

121. Mausner, LF, Kurczak, SO, Jamriska, DJ. Production of 73As by irradiation of Ge target. J Nucl Med 2004;45:471.Search in Google Scholar

122. Ellison, PA, Barnhart, TE, Engle, JW, Nickles, RJ, DeJesus, OT. Production and chemical isolation procedure of positron-emitting isotopes of arsenic for environmental and medical applications. AIP Conf Proc 2012;1509:135. https://doi.org/10.1063/1.4773955.Search in Google Scholar

123. Jennewein, M, Qaim, SM, Hermanne, A, Jahn, M, Tsyganov, E, Slavine, N, et al.. A new method for radiochemical separation of arsenic from irradiated germanium oxide. Appl Radiat Isot 2005;63:343–51. https://doi.org/10.1016/j.apradiso.2005.04.005.Search in Google Scholar

124. Feng, Y, DeGraffenreid, AJ, Phipps, MD, Rold, TL, Okoye, NC, Gallazzi, FA, et al.. A trithiol bifunctional chelate for 72,77As: a matched pair theranostic complex with high in vivo stability. Nucl Med Biol 2018;61:1–10. https://doi.org/10.1016/j.nucmedbio.2018.03.001.Search in Google Scholar

125. Sitarz, M, Cussonneau, JP, Matulewicz, T, Haddad, F. Radionuclide candidates for β+γ coincidence PET: an overview. Appl Radiat Isot 2020;155:108898. https://doi.org/10.1016/j.apradiso.2019.108898.Search in Google Scholar

126. Jennewein, M, Qaim, SM, Kulkarni, PV, Mason, RP, Hermanne, A, Rösch, F. A no-carrier-added 72Se/72As radionuclide generator based on solid phase extraction. Radiochim Acta 2005;93:579–83. https://doi.org/10.1524/ract.2005.93.9-10.579.Search in Google Scholar

127. Chajduk, E, Doner, K, Polkowska-Motrenko, H, Bilewicz, A. Novel radiochemical separation of arsenic from selenium for 72Se/72As generator. Appl Radiat Isot 2012;70:819–22. https://doi.org/10.1016/j.apradiso.2012.01.016.Search in Google Scholar

128. Jennewein, M, Schmidt, A, Novgorodov, AF, Qaim, SM, Rösch, F. A no-carrier-added 72Se/72As radionuclide generator based on distillation. Radiochim Acta 2004;92:245–9. https://doi.org/10.1524/ract.92.4.245.35611.Search in Google Scholar

129. Cea-Olivares, R, Toscano, RA, Lopez, M, Garcia, P. Coordination ability of the heterocycles 1,3-dithia-2-arsa- and -stiba-cyclopentanes towards sulfur containing ligands, Part II. Diheterocyclic dithiocarbamate complexes. X-ray structure of the 4-morpholinecarbodithioate of 1,3-dithia-2-arsa-cyclopentane. Monatsh Chem 1993;124:177–83. https://doi.org/10.1007/bf00808677.Search in Google Scholar

130. Garje, SS, Jain, VK, Tiekink, ERT. Synthesis and characterisation of organoarsenic(III) xanthates and dithiocarbamates. X-ray crystal structures of RAs(S2CNEt2)2, R = Me and Ph. J Organomet Chem 1997;538:129–34. https://doi.org/10.1016/s0022-328x(96)06905-7.Search in Google Scholar

131. Wenclawiak, BW, Uttich, S, Deiseroth, HJ, Schmitz, D. Studies on bulky residual group substituted arsenic(III) dithiocarbamate structures. Inorg Chim Acta 2003;348:1–7. https://doi.org/10.1016/s0020-1693(02)01482-2.Search in Google Scholar

132. Chen, D, Lai, CS, Tiekink, ERT. Tris(N,N-dimethyldithiocarbamato)arsenic(III) dichloromethane solvate. Appl Organomet Chem 2003;17:813–4. https://doi.org/10.1002/aoc.515.Search in Google Scholar

133. Chauhan, HPS, Kori, K, Shaik, NM, Mathur, S, Huch, V. Dialkyldithiocarbamate derivatives of toluene-3,4-dithiolato arsenic(III) and -bismuth(III): synthetic, spectral and single crystal X-ray structural studies. Polyhedron 2005;24:89–95. https://doi.org/10.1016/j.poly.2004.10.007.Search in Google Scholar

134. Tran, TTP, Ould, DMC, Wilkins, LC, Wright, DS, Melen, RL, Rawson, JM. Supramolecular aggregation in dithia-arsoles: chlorides, cations and N-centred paddlewheels. CrystEngComm 2017;19:4696–9. https://doi.org/10.1039/c7ce01117b.Search in Google Scholar

135. Kisenyi, JM, Willey, GR, Drew, MGB, Wandiga, SO. Toluene-3,4-dithiol (H2tdt) complexes of group 5B halides. Observations of lone-pair stereochemical activity and redox behaviour. Crystal and molecular structures of [AsCl(tdt)] and [PPh4][Sb(tdt)3]. J Chem Soc Dalton Trans 1985:69–74. https://doi.org/10.1039/dt9850000069.Search in Google Scholar

136. DeGraffenreid, AJ, Feng, Y, Barnes, CL, Ketring, AR, Cutler, CS, Jurisson, SS. Trithiols and their arsenic compounds for potential use in diagnostic and therapeutic radiopharmaceuticals. Nucl Med Biol 2016;43:288–95. https://doi.org/10.1016/j.nucmedbio.2016.01.005.Search in Google Scholar

137. Lyczko, M, Lyczko, K, Majkowska-Pilip, A, Bilewicz, A. 1,2-benzenedithiol and toluene-3,4-dithiol arsenic(iii) complexes-synthesis, structure, spectroscopic characterization and toxicological studies. Molecules 2019;24:3865. https://doi.org/10.3390/molecules24213865.Search in Google Scholar

138. Jennewein, M, Lewis, MA, Zhao, D, Tsyganov, E, Slavine, N, He, J, et al.. Vascular imaging of solid tumors in rats with a radioactive arsenic-labeled antibody that binds exposed phosphatidylserine. Clin Cancer Res 2008;14:1377–85. https://doi.org/10.1158/1078-0432.ccr-07-1516.Search in Google Scholar

139. Krajewski, S, Cydzik, I, Abbas, K, Bulgheroni, A, Simonell, F, Holzwarth, U, et al.. Simple and fast procedure of labelling DOTATATE with 86Y and 44Sc. Eur J Nucl Med Mol Imag 2012;39(2 Suppl):S525.Search in Google Scholar

140. Kunikowska, J, Kuliński, R, Muylle, K, Koziara, H, Królicki, L. 68Ga-Prostate-Specific membrane antigen-11 PET/CT: a new imaging option for recurrent glioblastoma multiforme? Clin Nucl Med 2020;45:11–8. https://doi.org/10.1097/rlu.0000000000002806.Search in Google Scholar

141. Hennrich, U, Eder, M. [68Ga]Ga-PSMA-11: The First FDA-Approved 68Ga-Radiopharmaceutical for PET Imaging of Prostate Cancer. Pharmaceuticals 2021;14:713.10.3390/ph14080713Search in Google Scholar PubMed PubMed Central

142. Guo, J, Rahme, K, He, Y, Li, LL, Holmes, JD, O’Driscoll, CM. Gold nanoparticles enlighten the future of cancer theranostics. Int J Nanomed 2017;12:6131–52. https://doi.org/10.2147/ijn.s140772.Search in Google Scholar

143. Dziawer, L, Kozminski, P, Meczynska-Wielgosz, S, Pruszynski, M, Lyczko, M, Was, B, et al.. Gold nanoparticle bioconjugates labelled with 211At for targeted alpha therapy. RSC Adv 2017;7:41024–32. https://doi.org/10.1039/c7ra06376h.Search in Google Scholar

144. Cytryniak, A, Nazaruk, E, Bilewicz, R, Górzyńska, E, Żelechowska-Matysiak, K, Walczak, R, et al.. A lipidic cubic-phase nanoparticles (cubosomes) loaded with doxorubicin and labeled with 177lu as a potential tool for combined chemo and internal radiotherapy for cancers. Nanomaterials 2020;10:2272. https://doi.org/10.3390/nano10112272.Search in Google Scholar

Received: 2021-09-06
Accepted: 2021-10-27
Published Online: 2021-11-16

© 2021 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 30.3.2024 from https://www.degruyter.com/document/doi/10.1515/bams-2021-0136/html
Scroll to top button