Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter (O) June 30, 2020

Barrier to internal rotation, symmetry and carbonyl reactivity in methyl 3,3,3-trifluoropyruvate

  • Kevin Gregor Lengsfeld EMAIL logo , Philipp Buschmann , Pavel Kats , Dirk Siekmann , Sven Herbers , Daniel Adam Obenchain , Stefanie Genuit , Cara Marie Höhne and Jens-Uwe Grabow

Abstract

High-resolution rotational spectroscopy was used to investigate the conformational landscape of methyl-3,3,3-trifluoropyruvate, a small, partially-fluorinated molecule, which is of interest because of its chemical properties and reactivity in contrast to the unfluorinated species. Methyl 3,3,3-trifluoropyruvate is also subject to two possible large amplitude motions of the methyl and trifluoromethyl group. However, only the methyl rotor gives rise to the tunneling splitting specific to individual conformers. In the rotational spectrum measured in the frequency region from 6 to 27 GHz, the identified conformers, s-cis and s-trans, were fitted to experimental accuracy, resulting in the accurate determination of the vibrational ground state rotational constants A0=2185.0582736 MHz, B0=1023.300 3117 MHz, and C0=803.52028795 MHz for the s-cis conformer, and A0=2706.9024(49) MHz, B0=864.889 539(81) MHz, and C0=746.532 896(71) MHz for the s-trans conformer. Additionally the barrier heights of the methyl rotor V3CH3=363.11694 cm1 and V3(CH3)=389.290(80) cm1 were obtained for the s-cis and s-trans conformer, respectively.


Dedicated to:

Friedrich Temps on the occasion of his 65th birthday.



Corresponding author: Kevin Gregor Lengsfeld, Institut für Physikalische Chemie und Elektrochemie Leibniz Universität Hannover, Callinstraße, 3a, 30167Hannover, Germany E-mail:

Funding source: Deutsche Forschungsgemeinschaft

Funding source: Alexander von Humboldt Foundation

Funding source: Fonds der Chemischen Industrie

Acknowledgments

We wish to thank the Land Niedersachsen, the Deutsche Forschungsgemeinschaft, DAO wishes to thank the Alexander von Humboldt Foundation and KGL wishes to thank the Fonds der Chemischen Industrie for fellowship.

References

1. Dong, Y., Goubert, G., Groves, M. N., Lemay, J. C., Hammer, B., McBreen, P. H. Acc. Chem. Res. 2017, 50, 1163–1170, https://doi.org/10.1021/acs.accounts.6b00516.Search in Google Scholar

2. Hernández-Cruz, O., Zolotukhin, M. G., Fomine, S., Alexandrova, L., Aguilar-Lugo, C., Ruiz-Treviño, F. A., Ramos-Ortíz, G., Maldonado, J. L., Cadenas-Pliego, G. Macromolecules 2015, 48, 1026–1037, https://doi.org/10.1021/ma502288d.Search in Google Scholar

3. Höss, E., Rudolph, M., Seymour, L., Schierlinger, C., Burger, K. J. Fluor. Chem. 1993, 61, 163–170, https://doi.org/10.1016/S0022-1139(00)80427-3.Search in Google Scholar

4. Wang, J., Sánchez-Roselló, M., Aceña, J. L., del Pozo, C., Sorochinsky, A. E., Fustero, S., Soloshonok, V. A., Liu, H. Chem. Rev. 2014, 114, 2432–2506, https://doi.org/10.1021/cr4002879.Search in Google Scholar

5. Lesarri, A., Vega-Toribio, A., Suenram, R. D., Brugh, D. J., Grabow, J. U. Phys. Chem. Chem. Phys. 2010, 12, 9624, https://doi.org/10.1039/c002123g.Search in Google Scholar

6. Pérez, C., Caballero-Mancebo, E., Lesarri, A., Cocinero, E. J., Alkorta, I., Suenram, R. D., Grabow, J. U., Pate, B. H. Chem. Eur J. 2016, 22, 9804–9811, https://doi.org/10.1002/chem.201601201.Search in Google Scholar

7. Peña, I., Daly, A. M., Cabezas, C., Mata, S., Bermúdez, C., Niño, A., López, J. C., Grabow, J. U., Alonso, J. L. J. Phys. Chem. Lett. 2013, 4, 65–69, https://doi.org/10.1021/jz301947g.Search in Google Scholar

8. Jahn, M. K., Dewald, D. A., Vallejo-López, M., Cocinero, E. J. Lesarri, A., Zou, W., Cremer, D., Grabow, J. U. Chem. Eur J. 2014, 20, 14084–14089, https://doi.org/10.1002/chem.201403379.Search in Google Scholar

9. Tolles, W. M., Handelman, E. T., Gwinn, W. D. J. Chem. Phys. 1965, 43, 3019–3024, https://doi.org/10.1063/1.1697269.Search in Google Scholar

10. Ilyushin, V. V., Favero, L. B., Caminati, W., Grabow, J. U. ChemPhysChem 2010, 11, 2589–2593, https://doi.org/10.1002/cphc.201000223.Search in Google Scholar

11. Favero, L. B., Grabow, J. U., Caminati, W. Chem. Eur J. 2012, 18, 2468–2471, https://doi.org/10.1002/chem.201103708.Search in Google Scholar

12. Jahn, M. K., Dewald, D. A., Wachsmuth, D., Grabow, J. U., Mehrotra, S. C. J. Mol. Spectrosc. 2012, 280, 54–60, https://doi.org/10.1016/j.jms.2012.07.006.Search in Google Scholar

13. Grabow, J., Stahl, W., Dreizler, H. Rev. Sci. Instrum. 1996, 67, 4072–4084, https://doi.org/10.1063/1.1147553.Search in Google Scholar

14. Frisch, M. J., Trucks, G. W., Schlegel, H. B., Scuseria, G. E., Robb, M. A., Cheeseman, J. R., Scalmani, G., Barone, V., Petersson, G. A., Nakatsuji, H., et al. Gaussian 16 Revision B.01; Gaussian Inc.: Wallingford CT, 2016.Search in Google Scholar

15. Becke, A. D. J. Chem. Phys. 1993, 98, 5648–5652, https://doi.org/10.1063/1.464913.Search in Google Scholar

16. Vosko, S. H., Wilk, L., Nusair, M. Can. J. Phys. 1980, 58, 1200–1211, https://doi.org/10.1139/p80-159.Search in Google Scholar

17. Lee, C., Yang, W., Parr, R. G. Phys. Rev. B 1988, 37, 785–789, https://doi.org/10.1103/PhysRevB.37.785.Search in Google Scholar

18. Stephens, P. J., Devlin, F. J., Chabalowski, C. F., Frisch, M. J. J. Phys. Chem. 1994, 98, 11623–11627, https://doi.org/10.1021/j100096a001.Search in Google Scholar

19. Becke, A. D., Johnson, E. R. J. Chem. Phys. 2005, 123, 154101, https://doi.org/10.1063/1.2065267.Search in Google Scholar

20. Johnson, E. R., Becke, A. D. J. Chem. Phys. 2005, 123, 024101, https://doi.org/10.1063/1.1949201.Search in Google Scholar

21. Grimme, S. J. Comput. Chem. 2006, 27, 1787–1799, https://doi.org/10.1002/jcc.20495.Search in Google Scholar

22. Grimme, S. J. Comput. Chem. 2004, 25, 1463–1473, https://doi.org/10.1002/jcc.20078.Search in Google Scholar

23. Grimme, S., Antony, J., Ehrlich, S., Krieg, H. J. Chem. Phys. 2010, 132, 154104, https://doi.org/10.1063/1.3382344.Search in Google Scholar

24. Grimme, S., Ehrlich, S., Goerigk, L. J. Comput. Chem. 2011, 32, 1456–1465, https://doi.org/10.1002/jcc.21759.Search in Google Scholar

25. Gordy, W., Cook, R. L. Microwave Molecular Spectra, 3rd ed.; Wiley: New York, 1984; p. 929.Search in Google Scholar

26. Reed, A. E., Weinhold, F. J. Chem. Phys. 1983, 78, 4066–4073, https://doi.org/10.1063/1.445134.Search in Google Scholar

27. Reed, A. E., Weinstock, R. B., Weinhold, F. J. Chem. Phys. 1985, 83, 735–746, https://doi.org/10.1063/1.449486.Search in Google Scholar

28. Reed, A. E., Weinhold, F. J. Chem. Phys. 1985, 83, 1736–1740, https://doi.org/10.1063/1.449360.Search in Google Scholar

29. Carpenter, J., Weinhold, F. J. Mol. Struct.: THEOCHEM. 1988, 169, 41–62, https://doi.org/10.1016/0166-1280(88)80248-3.Search in Google Scholar

30. Carpenter, J. E. Extension of Lewis Structure Concepts to Open-Shell and Excited-State Molecular Species. Ph.D. Thesis, University of Wisconsin-Madison, Madison, 1987.Search in Google Scholar

31. Naaman, R., Vager, Z., Eds. The Structure of Small Molecules and Ions; Springer US: Boston, MA, 1988.10.1007/978-1-4684-7424-4Search in Google Scholar

32. Pickett, H. M. J. Mol. Spectrosc. 1991, 148, 371–377, https://doi.org/10.1016/0022-2852(91)90393-0.Search in Google Scholar

33. Hartwig, H., Dreizler, H. Z. Naturforsch. 1996, 51, 923–932, https://doi.org/10.1515/zna-1996-0807.Search in Google Scholar

34. Bohn, R. K., Montgomery, J. A., Michels, H. H., Fournier, J. A. J. Mol. Spectrosc. 2016, 325, 42–49, https://doi.org/10.1016/j.jms.2016.06.001.Search in Google Scholar

35. Evangelisti, L., Spada, L., Li, W., Federici, I., Caminati, W. Mol. Phys. 2018, 116, 3503–3506, https://doi.org/10.1080/00268976.2018.1451001.Search in Google Scholar

36. Long, B., Powoski, R., Grubbs, G.II, Bailey, W., Cooke, S. J. Mol. Spectrosc. 2011, 266, 21–26, https://doi.org/10.1016/j.jms.2011.01.001.Search in Google Scholar

37. Williams, G., Owen, N. L., Sheridan, J. Trans. Faraday Soc. 1971, 67, 922–949, https://doi.org/10.1039/TF9716700922.Search in Google Scholar

38. Durig, J. R., Groner, P., Lin, J., van der Veken, B. J. J. Chem. Phys. 1992, 96, 8062–8071, https://doi.org/10.1063/1.462358.Search in Google Scholar

39. Velino, B., Favero, L. B., Ottaviani, P., Maris, A., Caminati, W., J. Phys. Chem. 2013, 117, 590–593, https://doi.org/10.1021/jp310074z.Search in Google Scholar

40. Hernandez-Castillo, A. O., Abeysekera, C., Hays, B. M., Kleiner, I., Nguyen, H. V. L., Zwier, T. S. J. Mol. Spectrosc. 2017, 337, 51–58, https://doi.org/10.1016/j.jms.2017.03.016.Search in Google Scholar

41. Tudorie, M., Kleiner, I., Hougen, J., Melandri, S., Sutikdja, L., Stahl, W. J. Mol. Spectrosc. 2011, 269, 211–225, https://doi.org/10.1016/j.jms.2011.07.005.Search in Google Scholar

42. Nguyen, H. V. L., Stahl, W., Kleiner, I. Mol. Phys. 2012, 110, 2035–2042, https://doi.org/10.1080/00268976.2012.683884.Search in Google Scholar

43. Melandri, S., Giuliano, B. M., Maris, A., Favero, L. B., Ottaviani, P., Velino, B., Caminati, W. J. Phys. Chem. 2007, 111, 9076–9079, https://doi.org/10.1021/jp0723970.Search in Google Scholar

44. Kisiel, Z., Pszczółkowski, L., Bia lkowska-Jaworska, E., Charnley, S. B. J. Mol. Spectrosc. 2007, 241, 220–229, https://doi.org/10.1016/j.jms.2006.12.011.Search in Google Scholar

Supplementary Material

The online version of this article offers supplementary material (https://doi.org/10.1515/zpch-2020-0008).

Received: 2019-12-27
Accepted: 2020-03-24
Published Online: 2020-06-30
Published in Print: 2020-08-27

© 2020 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 20.4.2024 from https://www.degruyter.com/document/doi/10.1515/zpch-2020-0008/html
Scroll to top button