Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter February 14, 2017

Delta sets for nonsymmetric numerical semigroups with embedding dimension three

  • Pedro A. García-Sánchez ORCID logo EMAIL logo , David Llena and Alessio Moscariello
From the journal Forum Mathematicum

Abstract

We present a fast algorithm to compute the Delta set of a nonsymmetric numerical semigroup with embedding dimension three. We also characterize the sets of integers that are the Delta set of a numerical semigroup of this kind.

MSC 2010: 20M13; 20M14; 05A17

Communicated by Manfred Droste


Award Identifier / Grant number: MTM2014-55367-P

Award Identifier / Grant number: FQM-343

Award Identifier / Grant number: FQM-5849

Funding statement: The first author is supported by the projects MTM2014-55367-P, FQM-343, FQM-5849, plan propio Universidad de Almería, and FEDER funds. The second author is supported by the projects FQM-343, MTM2014-55367-P and FEDER funds.

Acknowledgements

The authors thank the anonymous referee for their comments and suggestions.

References

[1] F. Aguiló-Gost, P. A. García-Sánchez and D. Llena, An algorithm to compute the primitive elements of an embedding dimension three numerical semigroup, Electron. Notes Discrete Math. 46C (2014), 185–192. 10.1016/j.endm.2014.08.025Search in Google Scholar

[2] T. Barron, C. O’Neill and R. Pelayo, On dynamic algorithms for factorization invariants in numerical monoids, preprint (2015), https://arxiv.org/abs/1507.07435; to appear in Math Comp. 10.1090/mcom/3160Search in Google Scholar

[3] S. T. Chapman, C. Bowles, N. Kaplan and D. Reiser, On Delta sets of numerical monoids, J. Algebra Appl. 5 (2006), 695–718. 10.1142/S0219498806001958Search in Google Scholar

[4] S. T. Chapman, P. A. García-Sánchez, D. Llena, A. Malyshev and D. Steinberg, On the Delta set and the Betti elements of a BF-monoid, Arab. J. Math. 1 (2012), 53–61. 10.1007/s40065-012-0019-0Search in Google Scholar

[5] S. T. Chapman, R. Hoyer and N. Kaplan, Delta Sets of numerical monoids are eventually periodic, Aequationes Math. 77 (2009), 273–279. 10.1007/s00010-008-2948-4Search in Google Scholar

[6] S. T. Chapman, N. Kaplan, J. Daigle and R. Hoyer, Delta sets of numerical monoids using non-minimal sets of generators, Comm. Algebra. 38 (2010), 2622–2634. 10.1080/00927870903045165Search in Google Scholar

[7] S. T. Chapman, N. Kaplan, T. Lemburg, A. Niles and C. Zlogar, Shifts of generators and delta sets of numerical monoids, Internat. J. Algebra Comput. 24 (2014), no. 5, 655–669. 10.1142/S0218196714500271Search in Google Scholar

[8] S. Colton and N. Kaplan, The realization problem for Delta sets of numerical semigroups, preprint (2015), https://arxiv.org/abs/1503.08496; to appear in J. Commut. Algebra. 10.1216/JCA-2017-9-3-313Search in Google Scholar

[9] M. Delgado, P. A. García-Sánchez and J. Morais, NumericalSgps. A package for numerical semigroups, Version 1.0.1, 2015, refereed GAP package, http://www.fc.up.pt/cmup/mdelgado/numericalsgps. 10.1145/2930964.2930966Search in Google Scholar

[10] J. I. García-García, M. A. Moreno-Frías and A. Vigneron-Tenorio, Computation of Delta sets of numerical monoids, Monatsh. Math. 178 (2015), no. 3, 457–472. 10.1007/s00605-015-0785-9Search in Google Scholar

[11] P. A. García-Sánchez, An overview of the computational aspects of nonunique factorization invariants, Multiplicative Ideal Theory and Factorization Theory. Commutative and Non-Commutative Perspectives (Graz 2014), Springer Proc. Math. Stat. 170, Springer, Cham (2016), 159–181. 10.1007/978-3-319-38855-7_7Search in Google Scholar

[12] A. Geroldinger, On the arithmetic of certain not integrally closed noetherian integral domains, Comm. Algebra 19 (1991), 685–698. 10.1080/00927879108824164Search in Google Scholar

[13] S. M. Johnson, A linear Diophantine problem, Can. J. Math. 12 (1960), 390–398. 10.4153/CJM-1960-033-6Search in Google Scholar

[14] A. Malyshev, A better bound for the periodicity of Delta Sets of numerical monoids, particular communication. Search in Google Scholar

[15] J. C. Rosales and P. A. García-Sánchez, Numerical Semigroups, Dev. Math. 20, Springer, New York, 2009. 10.1007/978-1-4419-0160-6Search in Google Scholar

[16] The GAP Group, GAP – Groups, Algorithms, and Programming, Version 4.7.5, 2014, http://www.gap-system.org. Search in Google Scholar

Received: 2015-07-31
Revised: 2016-12-23
Published Online: 2017-02-14
Published in Print: 2018-01-01

© 2019 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 31.5.2024 from https://www.degruyter.com/document/doi/10.1515/forum-2015-0065/html
Scroll to top button