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   Abstract 

 Integrator rods and optical arrays are the most frequently used 
components in illumination design for homogenizing radia-
tion fi elds. However, these two standard components are very 
different in their performance and characteristics. This tuto-
rial is aimed to illustrate the operation principle, basic design 
rules and the performance of those components. It should 
guide the optical designer towards the optimum choice for the 
individual illumination application. To illustrate the function-
ality of integrator rods and optical arrays simultaneously in 
angle and position, the concept of phase space is introduced. 
Here the effect of the homogenizing components can nicely 
be illustrated in the form of phase space transformations. 
This offers new insight and a different perspective onto the 
employment and characteristics of those elements.  

   Keywords:    illumination design;   lithography;   micro-optics; 
  optical integrators;   phase space.    

   1. Introduction 

 In imaging optical design, the standard component is a spher-
ical lens  –  fundamental design types and most aberration 
theory is built upon this single standard optical component. 
Illumination design is different. Typically, the light source, 
the system requirements and the application of illumination 
systems can vary over a wide range. Therefore, in addition, 
the employed optical elements will usually be very different. 
However, if an illumination designer is asked for those ele-
ments which are most frequently used to homogenize light 
distributions, he will most likely list homogenizer rods and 
optical arrays on top of the list. It is therefore worthwhile to 
understand the operation principle and the characteristic of 
those elements for everybody who tries to achieve homo-
geneous illumination within an optical system. 

 The history of employing these elements in illumination 
design is very long, and for integrator rods as well as optical 
arrays it is diffi cult to specify the  ‘ inventor ’  of those com-
ponents. Hollow refl ective triangular or rectangular elements 
have probably already been known by the ancient Greeks and 
were reinvented under the label  ‘ kaleidoscope ’  by Brewster in 
the beginning of the 19th century  [1] . Early use of integrating 
rods in technical illumination systems is known from Kodak 
in the early 20th century within projector systems  [2] . Later, 
rods were proposed and used for microscopy illumination 
 [3 – 5] , and lithographic illumination systems  [6, 7] . Even in 
the current laser lithography illumination systems integrator 
rods are used for homogenization of laser light sources, often 
in combination with an optical array  [8, 9] . 

 A similar picture exists for the use of optical arrays. Paul 
Cark suggested in 1905  [10]  an arrangement of prism or mir-
rors to  ‘ shuffl e ’  the light. Some years later, he and Henry 
Gage independently suggested the use of facetted mixing sys-
tems to improve the homogeneity of a projector  [11, 12] . A 
double facetted optical array was suggested by Mechau  [13]  
and also by R ä ntsch and colleagues  [14, 15] . In microscopy 
double facetted integrators are also known as  ‘ K ö hler inte-
grators ’  as each channel provides a K ö hler illumination  [16] . 
Since the beginning of microlithography optical arrays are 
used for lithography illumination systems and mask align-
ers. Only recently the use of high performance optical arrays 
allowed the improvement of mask aligners  [17] , as well the 
design of lithographic illumination systems with very com-
plex and variable pupil shapes, as, for example, used in mod-
ern source-mask optimized lithographic processes  [18, 19] . 
Moreover, variations of optical arrays in terms of gratings and 
holographic elements have been suggested  [20, 21] . Recently, 
K ö hler integrators have also been proposed to improve the 
performance of complex solar concentrators  [22, 23] .  

  2. The concept of phase space 

 Integrator rods and optical arrays will, in general, affect the 
spatial light distribution as well as the angular distribution 
of the interacting radiation fi eld. It is therefore desirable to 
fi nd an optical system representation, where the effect on ray 
angles and ray positions can simultaneously be observed and 
illustrated. The concept of phase space in optics provides such 
a platform  [24, 25] . Phase space methods are well known and 
extensively used in classical mechanics and quantum mechan-
ics  [26] , where position and the velocity of a particle defi ne 
its location in phase space. In optics, the position and velocity www.degruyter.com/aot
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 Figure 2    Illustration of a radiance distribution  L ( x , u ) in phase 
space. The projection of the radiance distribution onto the spatial or 
angular axis corresponds to the irradiance  E ( x ) and radiant intensity 
 I ( u ).    

of a particle are replaced by position and angle of a single 
ray within an optical system. Thus, ray tracing within optical 
systems corresponds to phase space trajectories leading to a 
transformation of radiation distributions in phase space. An 
analysis of this phase space transformation provides a com-
plete picture of the optical functionality of the optical sys-
tem, however, from a different perspective as compared to 
standard ray-tracing pictures. It turns out that in particular for 
illumination design problems, where the general transport of 
radiance is important and not the transfer of a spatial pattern, 
phase space provides an interesting access towards illumina-
tion design. However, to be able to follow this concept we 
fi rst need to cover some basic properties of phase space. 

  2.1. Phase space volume and fl ux distribution: etendue 

and radiance 

 As we are dealing with illumination problems we need to 
understand the basic connection of radiometry  [27]  and phase 
space  [28, 29] . Let us consider a source, or generally a radia-
tion fi eld, located at the origin of the coordinate system as 
shown in Figure  1  . The phase space volume occupied by 
this source is defi ned by its spatial and angular extend and 
thus follows from integration over the relevant area and solid 
angle. This quantity is called the etendue  [30, 31] : 

   
2 cos( )  Etendue n dA dθ= Ω∫∫  

 Here,  n  is the index of refraction and   θ   is the angle between 
the normal of the differential area  dA  and the centroid of the 
differential solid angle  d Ω  . In phase space, the etendue is con-
veniently expressed in terms of the projected solid angle  du  
and  dv , also containing the refractive index of the medium, 
thus etendue can be expressed as: 

   
   Etendue dx dy du dv=∫∫  

 Figure  1  illustrates a differential entendue element and its 
relation to solid angle and projected solid angle. The amount 
of fl ux, or optical power  d φ  , contained in a certain phase space 

volume element then defi nes the radiance distribution of the 
source, i.e., the  ‘ energetic ’  weight within phase space: 
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 In general, the radiance distribution  [32]  is a four-di-
mensional function of the phase space variables ( x ,  y ,  u ,  v ). 
However, as four dimensions are very diffi cult to visualize we 
will restrict ourselves within the context of this tutorial to two 
dimensions. In other words, we will only consider light dis-
tributions or ray patterns in the  xz- plane. Thus, the radiance  L  
is a function of  x  and  u  only. In this case, the angular variable 
 u  is associated with sin(  θ  ) of a ray relative to optical axis as 
apparent from Figure  1 . 

 From the radiance distribution  L ( x ,  u ) the radiant intensity 
 I ( u ) (fl ux per projected solid angle) and the irradiance  E ( x ) 
(fl ux per area) can be calculated by integration over the spa-
tial and angular dimension. In phase space, this corresponds 
to a projection of the radiance to the corresponding axis, as 
illustrated in Figure  2  . 

 For geometrical optical systems it follows from the 
Lagrange invariant  [33] , i.e.,  du dx   =   const , that phase space 
volume or etendue is conserved. As a consequence, as fl ux 
is conserved within lossless systems, the radiance itself is 
also conserved. Therefore, a geometrical optical system, with 
only refractive and refl ective elements, will only be able to 
redistribute phase space volume elements and its associated 
fl ux, but cannot change the total occupied volume, or the fl ux 
associated with each phase space element. Thus, as we will 
see, geometrical optical systems can only lead to a deforma-
tion or rearrangement of phase space distributions. 

 Currently, we need to note that the radiance as described 
above follows from empiric radiometric defi nitions. As we 
are relating this radiance to the concept of phase space, it is 
important to note that not every radiance distribution is con-
sistent with a rigorous electromagnetic treatment of radiation 
 [33] . A physical correct calculation of the generalized radiance 
distribution, or Wigner function  [34]  of an arbitrary light fi eld 
is rather complex, as it contains all coherence properties of the 

 Figure 1    Illustration of a phase space volume element, expressed 
in solid angle and projected solid angle.    
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source  [35] . However, as this is a tutorial, we will not concen-
trate on the calculation of the correct radiance distribution of a 
physical source, but are more interested in the propagation of 
this distribution through an optical system, as this will help us 
in understanding the optical functionality. Therefore, through-
out this paper we will use simplifi ed radiance distributions, 
even those that might not correspond to real physical sources. 
For those readers who are more interested in a thorough dis-
cussion of the Wigner function and its phase space behavior, 
we refer to the work of Bastiaans  [36] , Brenner and Ojeda-
Castaneda  [37] , or the book by Testorf et al.  [24] .  

  2.2. Propagation laws for phase space distributions 

 To study the effect of optical elements within phase space 
it is necessary to understand the propagation laws for phase 
space distributions. It generally follows from the superposi-
tion principle of linear systems that the propagation of a phase 
space distribution  F ( x ,  u ) through an optical system can be 
expressed as  [36] : 

   

1
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 Here, the kernel  K  describes the systems answer to a δ 
function in position and in angle. We will now associate these 
δ functions with a single optical ray and the kernel  K  with the 
ray transfer matrix of the optical system, describing the trans-
formation of an input ray with a certain angle and position 
( x   i  , u   i  ) onto an output ray ( x   o  , u   o  ). 

 Note that this is a severe approximation, as an optical light 
fi eld, consisting of a single ray and a δ function in angle and 
position, is highly nonphysical and violates Heisenberg ’ s 
uncertainty principle. As a consequence, the ray-based 
approach presented here does not contain any diffraction or 
interference effects, as it corresponds to the geometrical limit 
of optics. A more rigorous phase space approach has to be 
based on the Wigner distribution function  [24, 34] . The result-
ing complex propagation laws will include all coherence, 
interference and diffraction effect. 

 Although we will mention some diffraction and inter-
ference effects during the discussion of the homogenizing 
elements, from here on in we will restrict ourselves to the 
geometrical optical limit of phase space. In this picture, it is 
suffi cient to study the geometrical optical ray transfer matrix 
of the systems. 

 In the case of paraxial optical system, the ray transfer 
matrix is related to the  ABCD  matrix formalism of optical 
systems  [28, 38] , as the  ABCD  matrix will transform an input 
ray of a given position  x   i   and a given angle  u   i   to the output 
position  x   o   and angle  u   o   via the relation: 
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 Therefore, it follows for a lossless fi rst-order optical sys-
tem that the input-output relation simply follows the  ABCD  
formalism and reduces to: 

  F   o  ( x   o  , u   o  )  =   F 
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  )  (2) 

 The most important cases of fi rst-order optical systems 
treated in this tutorial correspond to a free propagation ( M   z  ) 
along a distance  z , propagation through a thin lens ( M   f  ) of 
focal length  f , and refl ection of a plane mirror ( M   m  ) oriented 
along the  z -direction. Therefore, we list the corresponding 
 ABCD  matrices for those cases, as follows: 
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 As another important arrangement within optical systems 
is the propagation from the front focal plane of a thin lens 
to the back focal plane of the same lens, i.e., a Fourier lens, 
above we also list the corresponding matrix ( M   r  ). This matrix 
results from sequential application of the free propagation, 
thin lens and free propagation matrices and corresponds to a 
rotation in phase space. 

 As, in particular, for integrator rods the angle  u  is not nec-
essarily small enough to fulfi ll a paraxial approach, we note 
that the exact free space propagation for arbitrary angles cor-
responds to: 
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 which results from the free space trajectory of a ray with arbi-
trary angle   θ  , as the above expression containing the square 
root, just corresponds to the tan(  θ  ) of the ray. In a similar 
way, optical aberrations can be included as additional nonlin-
ear terms in the transport equations  [39] .  

  2.3. Illustration of phase space propagation 

 According to the above principle the propagation of phase 
space distributions, as, e.g., the radiance distribution  L ( x , u ), 
can be easily illustrated. Let us fi rst consider a single ray 
propagating through an optical system. At each  z -position 
inside the optical system the position and the angle of the ray 
can be calculated from ray tracing (or, for paraxial systems, 
follows from the  ABCD  matrix formalism). A single ray may 
be associated with a point in phase space. Therefore, the prop-
agation of the ray through the optical system corresponds to a 
trajectory in phase space as illustrated in Figure  3  . 

 Therefore, ray tracing through an optical system will yield 
the corresponding phase space trajectories. Now the phase 
space distribution is  ‘ attached ’  to the rays and will follow 
the rays and the phase space trajectories, mathematically fol-
lows from Eq. (1). Thus, the input phase space distribution 
(or radiance distribution) will be deformed according to the 
phase space trajectories resulting from ray tracing through the 
system. 

 Employing the  ABCD  matrix formalism of Eq. (2) and 
Eq. (3) or the free space propagation, Eq. (4), we can thus 
illustrate different transformations corresponding to optical 
systems that will be important for the understanding of rod 
integrators and optical arrays in Figure  4  . 
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 Figure 5    Illustration of the optical functionality of a mixing rod: 
(A) a ray-tracing picture of an integrator rod, illustrating the effect 
of homogenization, (B)  ‘ unfolded ’  light propagation inside the rod 
and superposition of different parts, due to multiple refl ections at the 
rod faces, (C) view into the rod from one fi eld point, illustrating the 
facetted angular spectrum resulting from multiple refl ections of the 
entrance face distribution.    

  3. Integrator rods 

  3.1. Basic operation principle of integrator rods 

 The operation principle of a rod integrator is based on employ-
ing multiple refl ections inside a solid or hollow light guide to 
mix the incoming light distribution. The refl ection in solid 
rods is typically based on total internal refl ection (TIR) within 
the medium, such as fused silica, optical glass or plastic  [40] , 
but also hollow light guides with refl ective coatings can be 
used. The cross-section geometry can vary from quadratic, to 
hexagonal, or round, whereas the shape along the  z -direction 
is typically fl at or conically, which is then called a tapered 
light pipe. 

 The optical functionality is best illustrated by the simple case 
of a rectangular rod. Let us assume a point source with some 
angular divergence entering the rod as shown in Figure  5  A. 
As the sides of the rod act as plane mirrors, the rays will mix as 
they propagate through the rod. To obtain a better understand-
ing of the effect the ray tracing can be unfolded and then cor-
responds to a free propagation. In Figure  5 B, this is illustrated 
for the propagation of a point source with Gaussian angular 
distribution. The angular distribution will spread the beam 
as the light is propagating along the  z -direction. However, in 
the presence of the refl ecting faces of the rod, the distribution 
will be back-folded and superimposed at the exit of the rod. 
Therefore, different portions of the distribution will be added 
which results in a homogeneous intensity distribution at the 
exit  [41] . 

 The effect of the rod can also, however, be viewed from 
a different perspective. If we  ‘ look into the rod ’  from the 
exit face, as illustrated in Figure  5 C, we will see multiple 
refl ections of the entrance distribution. This effect is the 
 ‘ kaleidoscope ’  effect, as known from children ’ s toys, creat-
ing multiple patterns of the input distribution. Therefore, the 

 Figure 3    Ray tracing of a single ray through an optical system and 
the corresponding trajectories in phase space.    

 Figure 4    Phase space transformations: (A) initial distribution, (B) 
free paraxial propagation along a distance  z  along the optical axis, 
(C) propagation through a thin lens of focal length  f , (D) free space 
propagation over a distance  z  for nonparaxial angles, (E) propagation 
from the front focal plane of a lens of focal length  f  to the back focal 
plane of the lens, (F) free space propagation in combination with a 
refl ection of a plane mirror parallel to the optical axis.    

 From Figure  4 , we note that paraxial free propagation and 
the action of a thin lens will result in a shear of the initial dis-
tribution. By contrast, nonparaxial propagation results in a dis-
tortion of the distribution for large angles  u . The propagation 
from the front to the back focal plane of a lens corresponds to 
a rotation of the initial distribution. Finally, for propagation in 
the presence of a mirror at position  x   m  , as illustrated in Figure  3 , 
the distribution will be back-fold at the mirror to the front of 
the mirror. As we will see these basic transformations are suf-
fi cient to allow a full understanding of complex systems, such 
as integrator rods and optical arrays.   
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angular distribution at each point of the rod exit will be struc-
tured, each pattern resembling the intensity distribution at the 
entrance of the rod. 

 This already illustrates that the exit light distribution from 
an integrator rod in the general case will be nontrivial and can 
only for some geometries be easily derived without extensive 
simulation. Moreover, angular and spatial distributions are 
entangled. 

 To provide a more intuitive understanding of the element, 
in the following section, we will therefore chose a phase 
space approach to look at the optical transformation resulting 
from the rod.  

  3.2. Illustration of integrator rods in phase space 

 We will now employ the phase space transformations derived 
in Section 2 and illustrated in Figure  4  to derive the phase 
space distribution at the exit of an integrator rod. Note that 
this fi nal phase space distribution contains all information 
about the angular and spatial properties of the light exiting 
the rod. 

 The phase space transformation of the rod only consists of 
two basic operations, namely the free propagation inside the 
rod, as illustrated in Figures  4 B and 4D, and the action of the 
refl ecting side walls of the rod, as illustrated in Figure  4 E. 

 In Figure  6  , we apply these two basic operations onto the 
input distribution at the entrance of the rod (Figure  6 A). In 
the absence of the rod side walls this initial distribution will 
be just subject to free propagation. A free propagation cor-
responds to a shear in phase space. Thus, the input radiance 
distribution will be sheared as the light is propagating over 
the length of the rod. This is illustrated in Figure  6 B. If we 
now include the effect of the refl ections at the sides of the rod, 
the radiance distribution will be folded back and mirrored in 
angle each time the radiance distribution is refl ected. Taking 
both effects together, the phase space distribution at the exit 
of the rod corresponds to the sheared, multiple folded, and 
mirrored free-propagation radiance distribution, as illustrated 
in Figure  6 C. 

 From Figure  6 C, both the homogenizing effect as well 
as the kaleidoscope effect can be easily understood in one 
picture. The resulting irradiance distribution, shown at the 

bottom of Figure  6 C, is fairly homogeneous, as it corresponds 
to the superposition of segmented and shifted parts of the 
free-propagated phase space distribution. Similarly the angu-
lar distribution at the exit of the rod can be understood. At 
each point  x  of the rod, the angular distribution is fragmented 
into multiple segments, corresponding to the multiple refl ec-
tions of the distribution. By contrast, the integral angular dis-
tribution, shown to the left of Figure  6 A, of the exiting light is 
basically unchanged, however, symmetrized due to the even 
and odd number of refl ections at the rod side walls. This sym-
metrizing effect is nicely visible by the color-coded phase dis-
tributions in Figure  6 . Although the input angular distribution 
is coded from blue to red, this order is mixed within the fi nal 
distribution. 

 Figure  6  even reveals more complex details of the action of 
the integrator rod. The nonparaxial angles inside the rod will, 
in addition to the paraxial shear of the distribution, lead to a 
slight distortion of the distribution as it propagates inside the 
rod  –  compare Eq. (4). This nonlinear behavior is visible in 
the angular spectrum of the fi nal distribution, as the kaleido-
scope patterns will be not equidistant in angle anymore, as the 
angles become large. 

 The phase space picture also nicely reveals the nature of 
the element in phase space. If the input radiance distribution 
does not completely fi ll the rod in angle and position, the rod 
will pattern the accessible phase space, and such homogenize 
the light. Thus, the phase space is not continuously fi lled but 
rather thinned or diluted. Therefore, a rod, as it is based on 
refl ection only, will not increase etendue, but rather dilute it.  

  3.3. Performance factors and sensitivities of integrator 

rods 

 Clearly the homogenization improves with the number of 
refl ections  m  at the rod faces. This number depends on the 
ray angle   θ   relative to the axis of the rod and on the aspect 
ratio between length  L  and width  b  of the rod according to 
 m   =   L  tan (  θ  )/ b . This implies that to achieve a large number of 
refl ections the light needs to be tightly focused into the rod 
and numerical apertures of NA  =  0.5 – 0.7 at the rod entrance 
are common. In addition, a long and narrow rod will yield a 
better homogenization. However, the aspect ratio is restricted 

 Figure 6    Phase space illustration of the optical transformation introduced by an integrating rod: (A) initial phase space distribution at 
the entrance to the rod, (B) distribution after free propagation over the length of the rod, (C) fi nal distribution due to refl ections at the rod 
sidewalls.    
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by fabrication requirements and typically the ratio of diame-
ter to length is in the order of 1:10–1:15. As a consequence, in 
typical rod homogenizers the maximum number of refl ections 
is approximately 10 – 15 for the extreme angles. 

 As the resulting homogeneity at the exit of the rod is 
determined by the light distribution corresponding to free 
propagation along the length of the rod, the achievable homo-
geneity is somewhat dependent on this distribution. For a 
broad and smooth distribution, homogenization will usually 
work rather well, if the number of refl ections is suffi ciently 
high. Moreover, as the rod will with each refl ection invert the 
corresponding segment of the light distribution, tilts in the 
input distribution will be averaged out. More critical are large 
variations of the angular distribution for small angles, as here 
the number of refl ections is low and thus the averaging effect 
is limited.   

  4. Optical arrays and K ö hler integrators 

  4.1. Operation principle of optical arrays 

 In general, an optical array consists of multiple (typically 
equal) parallel small lenses, or micro-lenses. The incoming 
light is separated by the individual lens apertures into differ-
ent channels. The light in each channel is then refracted by the 
individual lens. All channels are subsequently superimposed 
at the back focal plane of an integrator lens, as illustrated in 
Figure  7  . 

 If we consider only one single channel, we notice that each 
channel forms an afocal telescope or beam expander. The 
input intensity distribution is thus segmented into patches 
according to the pitch  p  of the array, which are then expanded 
and superimposed at the back focal plane of the integrator 
lens. Thus, the width  w  at the target plane is: 

  w   =   p×F / f   (5) 

 Figure 7    General operation principle of an optical array. The input 
light distribution is separated by a fi rst optical array, consisting of 
micro-lenses of pitch  p  and focal length  f  into multiple channels, 
which are superimposed with the help of an integrator lens of focal 
length  F . An additional second array of micro-lenses can be used to 
image the fi rst array onto the target plane.    

 where  f  and  F  are the focal length of the micro-lens and the 
integrator lens. However, the aperture stop of each channel 
is defi ned by the entrance diameter of each micro-lens and 
thus is located at the micro-lens array itself. This fact results 
in sensitivity of this setup towards divergence, or pointing, in 
front of the array. Angles in front of the array will shift the 
light distribution at the target plane. Thus, pointing will result 
in a shift of the distribution and divergence results in a convo-
lution of the distribution with the divergence spectrum. 

 This disadvantage can be overcome by using an additional 
second optical array, typically located at the focal plane of 
the fi rst array. This second array of micro-lenses then acts as 
a fi eld lens array, and will image the stop and the fi rst array, 
onto the target plane. As a result, the arrangement will be 
insensitive to angles in front of the array. 

As generally, the far fi eld of the light source is used as an 
input to the optical array, a double array will image that far 
fi eld onto the illumination fi eld. Therefore, double optical 
arrays of this type are also called K ö hler integrators, as they 
provide a  ‘ K ö hler ’  type illumination  [16] .  

  4.2. Phase space illustration of optical arrays 

 Similar to the rod integrator in Section 4, we will now employ 
the phase space transformations developed in Section 2 and 
illustrated in Figure  4  to derive the fi nal phase space distribu-
tion at the exit of an optical array. To do so, let us fi rst con-
sider step-by-step the phase space transformation performed 
by one single channel of the array. 

 Figure  8   illustrates the consecutive operations performed 
on the input phase space distribution within one channel. 
Figure  8 B shows the phase space distribution right behind 
the fi rst micro-lens. In paraxial approximation, the micro-lens 
will shear the input distribution, introducing an angular spec-
trum of width  p / f , where  p  is the width of one channel and  f  is 
the focal length. Propagation to the focal plane of the micro-
lens will result in a rotated and sheared distribution, where 
the residual shear is due to the initial angular spectrum   Δ u , 
as illustrated in Figure  8 C. By contrast, Figure  8 D shows the 
situation if a second micro-lens is employed, i.e., a double 
optical array, or a K ö hler integrator. In this case, the residual 
shear is removed, as the second micro-lens introduces a com-
pensating amount of shear into the phase space distribution. 
Finally, the distribution will be propagated from the front 
focal length of the integrator lens to the back focal length. 
This corresponds to a rotation in phase space and scaling with 
focal length  F  of the integrator lens, as illustrated in Figure  8 E 
for a single array and in Figure  8 F for a double array. 

 This simple analysis of the phase space transformation 
induced by an optical array already allows qualitative and 
quantitative understanding of the system. Following from the 
basic phase space operations derived in Section 2, we found 
that the fi nal spatial width of the irradiance distribution is given 
by  w   =   p × F / f , in accordance with Eq. (5). Additionally, the bene-
fi t of a double array is immediately clear, as it allows to remove 
the residual shear of the distribution, resulting in a smear of the 
irradiance distribution of the amount   Δ w   =    Δ u × F . Thus, a dou-
ble array will be able to deliver an irradiance distribution with 
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a well-defi ned and sharp width, whereas the edges of the single 
array distribution are smeared out. This effect is obvious from 
the resulting spatial irradiance distribution at the exit of the 
optical array, as illustrated at the bottom of Figure  8 . 

 Having analyzed the transformation of a single channel we 
can now derive the transformation of the full optical array, as 
illustrated in Figure  9  . The initial distribution in phase space 
is segmented according to the lateral extend of each channel, 
as shown in Figure  9 A. While propagating to the focal plane 
of the fi rst micro-lens, each segment of the optical array will 
then result in a rotation as described above, in Figures  8 C and 
8D, respectively. This is illustrated in Figure  9 B. Note again 
that a single optical array will exhibit some residual shear of 
the input distribution, whereas a double array will produce 
a full rotation due to the action of the second micro-lens. 
Owing to the periodicity of the arrangement, these effects 
will repeat itself within each of the channels and thus create a 
comb-like structure in phase space, as shown in Figure  9 C. As 
a fi nal step, after the array the Fourier (or integrator) lens will 
introduce a rotation of the complete comb-like distribution in 
phase space, and fi nally produce the phase space distribution 
at the exit, as illustrated in Figure  9 D. 

 This reveals the general homogenization functionality. At 
the fi nal image plane, the spatial distribution consists of the 
sum over the phase space segments corresponding to each 
channel, thus providing homogenization in the spatial domain. 
By contrast, the angular spectrum at each fi eld point in x will 
exhibit an identical periodic pattern, each segment corre-
sponding to the angular divergence entering the channel. 

 Therefore, all features of the integration mechanism in an 
optical array integrator can be well understood from the phase 
space approach.  

  4.3. Performance factors and sensitivities of optical 

arrays 

 The performance of the array will improve as the number of 
channels is increased, thus it is desirable to reduce the size 
of the micro-lenses. As, generally, the focal length  F  of the 
integrator lens is fi xed by track length constraints the geo-
metrically introduced divergence angle sin(  θ  )  =   p / f  should be 
constant as the size of the micro-lens is reduced, to maintain 
the same illumination fi eld width  w . However, there are limi-
tations in the minimum size of one channel. The fi rst limita-
tions arise from fabrication methods, and another limitation 
is due to diffraction. It should be noted that the geometrical 
optical treatment presented here does not include diffrac-
tion. However, as we are dealing with micro-lenses of some 
small dimension  p  diffraction becomes relevant and we need 
to compare the angles introduced by diffraction to the geo-
metrical induced divergence angle. To be able to neglect 
divergence effects the pitch should be chosen large enough 
such that geometrical divergence is dominating, i.e.  p / f  >    >   λ  / p . 
Another related point to consider if optical arrays are used in 
combination with coherent or partial coherent light (such as 
lasers) is that the periodicity of the array will lead to periodic 
diffraction angles of the angular period   λ  / p  due to interfer-
ence of neighboring channels  [42] . 

 Figure 8    Phase space transformations within a single channel of an 
optical array: (A) initial distribution, (B) distribution directly behind 
the fi rst micro-lens, (C) distribution at the focal plane of the fi rst 
micro-lens, (D) same as before but in the presence of a second micro-
lens, (E) fi nal distribution at the back focal plane of the integrator 
lens for a single micro-lens array, (F) same as before, but for a double 
micro-lens array.    

 Figure 9    Phase space transformation for an optical array: (A) ini-
tial distribution segmented according to the pitch  p  of the array, (B) 
rotation of the phase space segment within each channel, for a double 
array (solid) and single array (dotted), (C) phase space distribution in 
the back focal plane of the array, (D) fi nal phase space distribution at 
the target plane of width  w .    
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 In the case of double micro-lens arrays the maximum 
acceptable divergence into the integrator is limited, as the 
light focused by the fi rst array needs to remain within the 
same channel. Therefore, the maximum allowed angle enter-
ing the double array is given by sin(  θ   max )   ≤    p / f . The source and 
collimator arrangement in front of the array thus has to be 
designed to fulfi ll this requirement on collimation. 

 As apparent from Figure  9 , an optical integrator will seg-
ment an input light distribution into a large number of seg-
ments (corresponding to the number of channels) and will 
superimpose these segments at the image plane. However, as 
is also apparent from the illustration there are no refl ections or 
other symmetrizing effects involved. As a consequence, within 
each channel left and right (top and bottom, respectively) will 
be transferred with the same orientation to the target plane. 
Therefore, arrays are somewhat sensitive to irradiance tilts in 
the input distribution. However, in practice and for two-dimen-
sional arrays this is typically not a severe limitation. One way 
to avoid this sensitivity is to use alternating arrays of positive 
and negative micro-lenses, as then the image of each second 
channel will be inverted. Currently, in general, a large variety 
of sizes and geometries for optical arrays can be manufactured 
and we refer to the supplier for further information  [43] .   

  5. Applications 

  5.1. Light homogenization 

 The main application for integrator rods and arrays is to homo-
genize light distributions. Therefore, both components are 
widely used in projection optical systems  [44] . Here, both com-
ponents are in general well suited for homogenization; however, 
they will differ in their performance and will also infl uence the 
optical system design, as illustrated in Figure  10  . 

 Typically, the source light distribution (1) needs to be con-
ditioned before entering the integrating device (3). An optical 
array will require a collimated input beam, thus a collima-
tor system (2) will be employed. For a rod integrator usually 
the source is re-imaged with the help of a relay system (2) 

onto the entrance of the rod, also providing the required large 
numerical aperture into the rod. 

 Similarly at the exit of the integrating element an adapted 
optical system is required. For optical arrays a Fourier lens (4) 
is needed to create the homogeneous illumination at the tar-
get plane (which is the back focal length of the Fourier lens). 
Usually the focal length of the Fourier optics together with the 
optical array can be chosen such that the image plane has the 
proper fi eld size. In the case of the rod only very rarely the rod 
exit face can serve as the fi nal image plane, therefore another 
relay system is required to re-image the rod-exit onto an acces-
sible target plane, in many cases also adapting the fi eld size. 

 In general, thus, an array integrator system can be more 
compact in length as compared to a rod system.  

  5.2. Color mixing 

 Both elements can be used as color mixing devices; however, 
the integrator rod is less sensitive to chromatic effects. It is 
apparent from the basic operation principle that rods mostly 
relay on refl ection, rather than refraction. In fact, hollow rods 
are completely free of chromatic effects, as they are pure 
refl ective systems. 

 In TIR homogenizers the only surfaces introducing chro-
matic aberrations are the entrance and the exit surface leading 
to a slight difference in the angular spectrum inside the rod. 
This difference will lead to a shift of the kaleidoscope pattern 
with wavelength. Therefore, the angular pattern at the exit of 
the rod will exhibit a chromatic structure. Besides that there 
is no major chromatic hit in performance, such that integra-
tor rods are widely used for color mixing. For example, rod 
systems are used in projector systems for mixing of RGB laser 
diodes or LEDs to achieve white illumination at the exit of the 
rod. 

 By contrast, optical arrays are based on refraction and are 
as a consequence more affected by chromatic effects. The 
main chromatic effect will be the dependence of the focal 
length of the micro-lens on the wavelength. According to 
Eq. (4), a change in the focal length will affect the width of 
the illuminated area. Therefore, the main chromatic effect in 
refractive micro-lens arrays is a color-dependent illumination 
fi eld width, visible as a colored edge of the illumination fi eld. 
Besides that the chromatic aberrations will not fundamentally 
affect the functionality of the array; therefore, for a certain 
spectral width the mixing in the central area of the illumina-
tion fi eld will be unaffected. Thus, it depends on the applica-
tion and on the spectral range if the described effects, e.g., the 
colored edge, can be tolerated and arrays are a valid choice 
for color mixing.  

  5.3. Lithography systems 

 Integrator rods as well as optical arrays are also used in 
most lithography illumination systems and mask align-
ers. However, the purpose of the elements is not only to 
homogenize the light distribution but also to  ‘ copy ’  (inte-
grate) the illumination pupil across the illumination fi eld. 
This is of crucial importance, as any lithographic process 

 Figure 10    Typical system layout for array integrator and rod sys-
tems. Typically the light source (1) needs to be collimated and re-
imaged (2). After the integrating element (3) a Fourier lens or relay 
system (4) is required to produce an accessible illumination fi eld.    
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requires equal image transfer at any point in the fi eld, thus 
intensity and illumination angles, i.e., the pupil, must be 
invariant. 

 A typical lithography illumination system concept is in 
agreement with the general system architecture shown in 
Figure  10 . In a fi rst step the desired illumination pupil, i.e., 
the desired illumination angles at the mask, is generated. 
This pupil generation typically is performed within the col-
limated beam path of element (2) in Figure  10 , with the 
help of complex apertures or optical elements. This pupil 
shape then needs to be copied across the illumination fi eld 
to provide: (i) uniform intensity across the fi eld and (ii) an 
identical illumination pupil across the fi eld. The integrating 
element (rod or array) thus needs to  ‘ copy ’  the input pupil 
across the illumination fi eld. Therefore, it is a requirement 
that the optical integrator does preserve the shape of the 
input pupil. This is of particular importance in the case of 
more complex illumination pupils, as, e.g., used in source 
mask optimized lithographic processes, where very com-
plex masks and also very complex illumination pupils are 
used  [19] . 

 As explained in Section 3, an integrator rod will due to 
its operation principle symmetrize the angles, i.e., the pupil, 
and also lead to some fi eld-dependent pupil segments. By 
contrast, an optical array integrator will create an exact fi eld 
invariant copy of the input pupil. 

 As a consequence, integrator rods are not very well suited 
for complex, in particular nonsymmetric illumination pupils 
used in modern source mask optimized lithographic processes 
 [45, 46] . This is one of the reasons why the latest genera-
tion of lithography illumination systems does employ arrays 
instead of rod integrators.   

  6. Summary 

 Within this tutorial our attempt was to introduce and apply 
simple phase space methods to provide insight into the 
operation principle of mixing rods and optical arrays  –  the 
two most frequently employed components in illumination 
design. To share this insight with non-experts in the fi eld we 
have tried to avoid complex mathematical discussions but 
rather concentrated on a more illustrative insight and also 
on the geometrical optical limit. We aligned this phase space 
approach with a standard ray-based explanation of the opera-
tion principle of the components. It turned out that the phase 
space perspective can provide a rather effi cient understand-
ing of the functionality of those elements, as angular and 
spatial properties are revealed in one picture. This allows 
access to even complex illumination systems, as, e.g., used 
in lithography. 

 This should be encouraging to the community and is 
defi nitely encouraging to us, to extend phase space meth-
ods towards the design and understanding of more complex 
light mixing and concentrating devices, even so this requires 
a full four-dimensional treatment in phase space. The four-
dimensional treatment of complex rod or array geometries 
was beyond the scope of this tutorial. However, it is still our 

general belief that phase space is a solid basis for solving 
illumination design problems, similarly as aberration theory 
forms a basis for optical imaging design.   

    Acknowledgments 

 We would like to thank the Stuttgart Center of Photonic Engineering 
(SCoPE) for support and discussion. Also one of the authors 
(A.M.H.) has gained most of the insight and understanding of optical 
arrays and integrator rods during the work on lithographic illumina-
tion systems at Carl Zeiss SMT, therefore he would like to thank the 
illumination design group and in particular Johannes Wangler and 
Markus Deg ü nther for their valuable discussion and also for sharing 
their insight into the history of those elements.   

   References 

[1]    D. Brewster, in  ‘ Treatise on the Caleidoscope ’  (Edinburgh, 
1819).  

[2]    J. G. Capstaff,  ‘ Illuminating System for Photographic 
Apparatus ’ , US-patent 1,880,414 (1932).  

[3]    T. Haymizu,  ‘ Annular Illumination Device ’ , US-patent 
4,476,515 (1981).  

[4]    A. Weyrauch,  ‘ Lighting Arrangement ’ , US-patent 3,600,568 
(1971).  

[5]    M. M. Chen, J. B. Berkowitz-Mattuck and P. E. Glaser, Appl. 
Opt. 2, 265 – 271 (1963).  

[6]    H. E. Mayer and E. W. Loebach, SPIE 221, 9 – 18 (1980).  
[7]    B. Fan, R. E. Tibbetts, J. S. Wilczynski and D. F. Witman,  ‘ Laser 

Beam Homogenizer ’ , US-patent 4,744,615 (1988).  
[8]    M. Shibuya and M. Uehara,  ‘ Illumination Optical Arrangement ’ , 

US-patent 4,619,508 (1986).  
[9]    J. Wangler and J. Liegel, Proc. SPIE 1138, 129 – 136 (1990).  

[10]    P. Clark,  ‘ Luminous Sign ’ , US-patent 842,860 (1907).  
[11]    P. Clark,  ‘ Projection-machine Illumination ’ , US-patent 

1,248,456 (1917).  
[12]    H. P. Gage and W. Churchill,  ‘ Condensing System for Optical 

Projecting Apparatus ’ , US-patent 1,333,304 (1920).  
[13]    E. Mechau,  ‘ Beleuchtungseinrichtung f ü r Bildwerfer ’ , 

DE-patent 561,573 (1928).  
[14]    K. R ä ntsch, H. Schering and A. Merz,  ‘ Illuminating Device for 

Projectors ’ , US-patent 2,183,249 (1939).  
[15]    K. R ä ntsch, L. Bertele, H. Sauer and A. Merz,  ‘ Illuminating 

System ’ , US-patent 2,186,123 (1940).  
[16]    A. K ö hler, Zeitschr. Wissenschaftl. Mikroskop. 10, 433 – 440 

(1893).  
[17]    R. Voelkel, U. Vogler, A. Bich, P. Pernet, K. J. Weible, et al., 

Opt. Express 18, 20968 (2010).  
[18]    A. M. Herkommer, Proc. SPIE 7652 (2010).  
[19]    A. E. Rosenbluth, S. Bukofsky, C. Fonseca, M. Hibbs, K. Lai, 

et al., SPIE 4346, 486 (2001).  
[20]    H. Dammann, Appl. Optics 19, 2276 – 2277 (1980).  
[21]    S. K. Case,  ‘ Holographic Method for Producing Desired 

Wavefront Transformations ’ , US-patent 4,547,037 (1985).  
[22]    O. Dross, R. Mohedano, M. Hernandez, A. Cvetkovic, 

P. Benitez, et al., Laser Focus World 45 (2009).  
[23]    M. Hernandez, A. Cvetkovic, P. Bentitez and J. C. Minano, 

Proc. SPIE 7059 (2008).  
[24]    M. Testorf, B. Hennelly and J. Ojeda-Castaneda, in  ‘ Phase-

space Optics ’  (McGraw-Hill Companies, 2010).  



78  D. Rausch and A.M. Herkommer

[25]    M. J. Bastiaans, Opt. Commun. 25, 26 – 30 (1978).  
[26]    E. Wigner, Phys. Rev. 40, 749 – 759 (1932).  
[27]    R. C. Jones, J. Opt. Soc. Am. 53, 1314 – 1315 (1963).  
[28]    H. Gross, in  ‘ Handbook of Optical Systems 1 – 4 ’  (Wiley-VCH, 

Weinheim, 2005).  
[29]    W. J. Cassarly, in  ‘ OSA Handbook of Optics ’ , Vol. 3 (McGraw 

Hill, 2001).  
[30]    D. Goodman, in  ‘ OSA Handbook of Optics ’ , Vol. 1, Chapter 1 

(McGraw Hill, New York, 1995).  
[31]    H. Ries, J. Opt. Soc. Am. 72, 380 – 385 (1982).  
[32]    J. Palmer, in  ‘ OSA Handbook ’ , Vol. 3 (2000).  
[33]    M. Born and E. Wolf, in  ‘ Principle of Optics ’  (Pergamon Press, 

New York, 1959).  
[34]    H. O. Bartelt and K. H. Brenner, Israel J. Techn. 18, 260 – 262 

(1980).  
[35]    W. H. Carter and E. Wolf, J. Opt. Soc. Am. 67, 785 – 796 

(1977).  
[36]    M. J. Bastiaans, J. Optic. Soc. Am. 69, 1710 – 1716 (1979).  

[37]    K. H. Brenner and J. Ojeda-Castaneda, Opt. Acta 31, 213 – 223 
(1984).  

[38]    R. K. Luneburg, in  ‘ Mathematical Theory of Optics ’  (University 
of California Press, Berkeley, CA, 1966).  

[39]    A. W. Lohmann, J. Ojeda-Castaneda and N. Streibl, Opt. Appl. 
3, 465 – 471 (1983).  

[40]    S. B ä umer (Ed.),  ‘ Handbook of Plastic Optics ’  (Wiley-VCH, 
Berlin, 2010).  

[41]    K. Iwasaki, T. Hayashi, T. Goto and S. Shimizu, Appl. Opt. 29, 
1736 – 1744 (1990).  

[42]    R. Voelkel, K. J. Weible, SPIE 7101 (2008).  
[43]    R. Voelkel, Optik Photonik. 4, 36 – 40 (2011).  
[44]    A. V. Arecchi, T. Messadi and R. J. Koshel, in  ‘ Field Guide to 

Illumination ’ , SPIE FG11 (SPIE-Press, Washington, DC, 2007).  
[45]    M. Mulder, A. Engelen and O. Noordman, Proc. SPIE 7652 

(2009).  
[46]    M. Mulder, A. Engelen, O. Noordman, G. Streutker, 

B. Drieenhuizen, et al., Proc. SPIE 7640, 76401P (2010).     

Denise Rausch received her 
diploma in Physics at the 
University of Stuttgart in 
2011. Currently, she is work-
ing on her PhD at the Institut 
für Technische Optik in the 
group for optical design.

Alois Herkommer received 
his PhD in Physics in 1995 
from the University of Ulm 
in the area of quantum optics. 
In 1996 he joined Carl Zeiss 
in Oberkochen and worked 
on the optical design of high 
performance lithographic and 
metrology systems. From 
2000 to 2005 he was with the 
optical design group at Carl 
Zeiss Laser Optics GmbH. 
Afterwards he headed the 
illumination design group 

and later the systems design group at the Carl Zeiss SMT 
GmbH. Since 2011 he has been Professor for “optical design 
and simulation” at the Institut für Technische Optik (ITO) at 
the University of Stuttgart.


