Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter (O) October 6, 2018

Identify the Active Phase of Fe–CN Composites for Oxidation Removal of Rhodamine B with H2O2

  • Tingting Diao , Wenyao Wang , Xuelian Xu , Ping Xiao , Duihai Tang , Junjiang Zhu EMAIL logo and Zhen Zhao

Abstract

Fe-containing carbon nitrides (Fe–CN) prepared with various CN precursors, including dicyandiamide, melamine, guanidine hydrochloride and urea, were characterized by X-ray diffraction, thermal gravimetric analysis, N2 physisorption, transmission electron microscopy, X-ray photoelectron spectroscopy and atomic emission spectrometer measurements, and used as catalysts to catalyze the rhodamine B oxidation with H2O2 as oxidant. Characteristic results showed that Fe–CN exhibits different compositions, properties and catalytic performances if different CN precursors are used. The Fe–CN prepared from dicyandiamide contains mainly CN phase and certain amounts of surface Fe2O3 phase, exhibits the best activity; while that prepared from urea contains mainly Fe2O3 phase and few amounts of CN phase, exhibits the worst activity. Contrasting experiments conducted under light irradiation, with a supported Fe/CN_D catalyst, and that using a washed catalyst, suggested that the surface Fe2O3 is the active site of the reaction.

Award Identifier / Grant number: 21203254

Award Identifier / Grant number: 21601128

Funding statement: Finance support from the National Natural Science Foundation of China (No. 21203254, 21601128), the Natural Science Foundation of Liaoning Province of China (201602681), the Shenyang Municipal Science and Technology Planning projects (17-76-1-00) and the Shenyang Normal University Excellent Talent Support Program (51600203, 51600210, 41500108002), is gratefully acknowledged. The authors acknowledge the supports from the Engineering Technology Research Center of Catalysis for Energy and Environment, Major Platform for Science and Technology of the Universities in Liaoning Province, Liaoning Province Key Laboratory for Highly Efficient Conversion and Clean Utilization of Oil and Gas Resources, and the Engineering Research Center for Highly Efficient Conversion and Clean Use of Oil and Gas Resources of Liaoning Province.

References

1. A. M. Ghaedi, A. Vafaei, Adv. Colloid Interface Sci. 245 (2017) 20.10.1016/j.cis.2017.04.015Search in Google Scholar PubMed

2. T. Robinson, G. McMullan, R. Marchant, P. Nigam, Bioresour. Technol. 77 (2001) 247.10.1016/S0960-8524(00)00080-8Search in Google Scholar PubMed

3. S. Kittler, B. Klemmed, T. Wolff, A. Eychmüller, Z. Phys. Chem. 232 (2017) 1.10.1515/zpch-2017-0979Search in Google Scholar

4. O. Flender, W. Lohse Peter, J. Du, T. Oekermann, M. Scholz, K. Oum, T. Lenzer, Z. Phys. Chem. 229 (2015) 1907.10.1515/zpch-2015-0604Search in Google Scholar

5. H.-Y. Shu, C.-R. Huang, M.-C. Chang, Chemosphere 29 (1994) 2597.10.1016/0045-6535(94)90060-4Search in Google Scholar

6. C. Comninellis, A. Kapalka, S. Malato, S. A. Parsons, I. Poulios, D. Mantzavinos, J. Chem. Technol. Biotechnol. 83 (2008) 769.10.1002/jctb.1873Search in Google Scholar

7. M. Saeed, M. Siddique, M. Usman, A. ul Haq, G. Khan Samreen, A. Raoof Hafiz, Z. Phys. Chem. 231 (2017) 1559.10.1515/zpch-2016-0921Search in Google Scholar

8. Y. Zhao, Y. Chen, J. Zhao, Z. Tong, S. Jin, Sep. Purif. Technol. 188 (2017) 329.10.1016/j.seppur.2017.07.044Search in Google Scholar

9. L. Wu, J. Lan, S. Wang, J. Zhu, Z. Phys. Chem. 231 (2017) 1525.10.1515/zpch-2016-0912Search in Google Scholar

10. K. Ramesh, A. Rajappa, V. Nandhakumar, Z. Phys. Chem. 231 (2017) 1057.10.1515/zpch-2016-0868Search in Google Scholar

11. I. Safarik, L.F.T. Rego, M. Borovska, E. Mosiniewicz-Szablewska, F. Weyda, M. Safarikova, Enzyme Microb. Technol. 40 (2007) 1551.10.1016/j.enzmictec.2006.10.034Search in Google Scholar

12. H. S. Rai, M. S. Bhattacharyya, J. Singh, T. K. Bansal, P. Vats, U. C. Banerjee, Crit. Rev. Environ. Sci. Technol. 35 (2005) 219.10.1080/10643380590917932Search in Google Scholar

13. H. Kang, J. Shi, L. Liu, M. Shan, Z. Xu, N. Li, J. Li, H. Lv, X. Qian, L. Zhao, Appl. Surf. Sci. 428 (2018) 990.10.1016/j.apsusc.2017.09.212Search in Google Scholar

14. S. Meriç, H. Selcuk, M. Gallo, V. Belgiorno, Desalination 173 (2005) 239.10.1016/j.desal.2004.09.002Search in Google Scholar

15. E. Neyens, J. Baeyens, J. Hazard. Mater. 98 (2003) 33.10.1016/S0304-3894(02)00282-0Search in Google Scholar PubMed

16. J. Khan, M. Sayed, F. Ali, M. K. Hasan, Z. Phys. Chem. 232 (2018) 507.10.1515/zpch-2017-1072Search in Google Scholar

17. F. Rehman, M. Sayed, J. A. Khan, L. A. Shah, N. S. Shah, M. Khan Hasan, R. Khattak, Z. Phys. Chem. 232 (2018) 1771.10.1515/zpch-2017-1099Search in Google Scholar

18. P. Xiao, J. Hong, T. Wang, X. Xu, Y. Yuan, J. Li, J. Zhu, Catal. Lett. 143 (2013) 887.10.1007/s10562-013-1026-2Search in Google Scholar

19. W. Luo, L. Zhu, N. Wang, H. Tang, M. Cao, Y. She, Environ. Sci. Technol. 44 (2010) 1786.10.1021/es903390gSearch in Google Scholar PubMed

20. Z. He, Y. Xia, B. Tang, J. Su, X. Jiang, Z. Phys. Chem. 233 (2019) 347.10.1515/zpch-2017-1017Search in Google Scholar

21. M. Saeed, A. Mansha, M. Hamayun, A. Ahmad, A. Ulhaq, M. Ashfaq, Z. Phys. Chem. 232 (2018) 359.10.1515/zpch-2017-1065Search in Google Scholar

22. W. Peng, I. M. C. Lo, Water Res. 43 (2009) 3727.10.1016/j.watres.2009.05.041Search in Google Scholar PubMed

23. X. Hou, W. Shen, X. Huang, Z. Ai, L. Zhang, J. Hazard. Mater. 308 (2016) 67.10.1016/j.jhazmat.2016.01.031Search in Google Scholar PubMed

24. H. Li, J. Zhu, P. Xiao, Y. Zhan, K. Lv, L. Wu, M. Li, Microporous Mesoporous Mater. 221 (2016) 159.10.1016/j.micromeso.2015.09.034Search in Google Scholar

25. X.C. Wang, X.F. Chen, A. Thomas, X. Z. Fu, M. Antonietti, Adv. Mater. 21 (2009) 1609.10.1002/adma.200802627Search in Google Scholar

26. A. Thomas, A. Fischer, F. Goettmann, M. Antonietti, J. O. Muller, R. Schlogl, J. M. Carlsson, J. Mater. Chem. 18 (2008) 4893.10.1039/b800274fSearch in Google Scholar

27. J. Zhu, P. Xiao, H. Li, S. Carabineiro, ACS Appl. Mater. Interfaces 6 (2014) 16449.10.1021/am502925jSearch in Google Scholar PubMed

28. X. Wang, S. Blechert, M. Antonietti, ACS Catal. 2 (2012) 1596.10.1021/cs300240xSearch in Google Scholar

29. S.-W. Cao, J. Low, J. Yu, M. Jaroniec, Adv. Mater. 27 (2015) 2150.10.1002/adma.201500033Search in Google Scholar PubMed

30. B. Zhu, P. Xia, W. Ho, J. Yu, Appl. Surf. Sci. 344 (2015) 188.10.1016/j.apsusc.2015.03.086Search in Google Scholar

31. Y. Wang, H. Li, J. Yao, X. Wang, M. Antonietti, Chem. Sci. 2 (2011) 446.10.1039/C0SC00475HSearch in Google Scholar

32. F. Dong, L. Wu, Y. Sun, M. Fu, Z. Wu, S. C. Lee, J. Mater. Chem. 21 (2011) 15171.10.1039/c1jm12844bSearch in Google Scholar

33. J. Yu, K. Wang, W. Xiao, B. Cheng, Phys. Chem. Chem. Phys. 16 (2014) 11492.10.1039/c4cp00133hSearch in Google Scholar PubMed

34. H. Yang, K. Lv, J. Zhu, Q. Li, D. Tang, W. Ho, M. Li, S. A. Carabineiro, Appl. Surf. Sci. 401 (2017) 333.10.1016/j.apsusc.2016.12.238Search in Google Scholar

35. T. Yuan, H. Gong, K. Kailasam, Y. Zhao, A. Thomas, J. Zhu, J. Catal. 326 (2015) 38.10.1016/j.jcat.2015.03.007Search in Google Scholar

36. A. Habibi-Yangjeh, A. Akhundi, J. Mol. Catal. A: Chem. 415 (2016) 122.10.1016/j.molcata.2016.01.032Search in Google Scholar

37. A. Akhundi, A. Habibi-Yangjeh, J. Colloid Interface Sci. 504 (2017) 697.10.1016/j.jcis.2017.06.025Search in Google Scholar PubMed

38. M. Mousavi, A. Habibi-Yangjeh, Adv. Powder Technol. 29 (2018) 94.10.1016/j.apt.2017.10.016Search in Google Scholar

39. Y. Wang, X. Wang, M. Antonietti, Angew. Chem. Int. Ed. 51 (2012) 68.10.1002/anie.201101182Search in Google Scholar PubMed

40. H. Xiao, W. Wang, G. Liu, Z. Chen, K. Lv, J. Zhu, Appl. Surf. Sci. 358 (2015) 313.10.1016/j.apsusc.2015.07.213Search in Google Scholar

41. Y. Cui, Z. Ding, P. Liu, M. Antonietti, X. Fu, X. Wang, Phys. Chem. Chem. Phys. 14 (2012) 1455.10.1039/C1CP22820JSearch in Google Scholar PubMed

42. L. Jiang, X. Yuan, G. Zeng, X. Chen, Z. Wu, J. Liang, J. Zhang, H. Wang, H. Wang, ACS Sustain. Chem. Eng. 5 (2017) 5831.10.1021/acssuschemeng.7b00559Search in Google Scholar

43. R.-R. Jin, J.-G. You, Q. Zhang, D. Liu, S.-Z. Hu, J.-Z. Gui, Acta Phys. Chim. Sin. 30 (2014) 1706.10.3866/PKU.WHXB201406272Search in Google Scholar

44. P. Xiao, H. Li, T. Wang, X. Xu, J. Li, J. Zhu, RSC Adv. 4 (2014) 12601.10.1039/C4RA00917GSearch in Google Scholar

45. M. Groenewolt, M. Antonietti, Adv. Mater. 17 (2005) 1789.10.1002/adma.200401756Search in Google Scholar

46. X. C. Wang, K. Maeda, A. Thomas, K. Takanabe, G. Xin, J.M. Carlsson, K. Domen, M. Antonietti, Nat. Mater. 8 (2009) 76.10.1038/nmat2317Search in Google Scholar PubMed

47. C. M. Lousada, A. J. Johansson, T. Brinck, M. Jonsson, J. Phys. Chem. C 116 (2012) 9533.10.1021/jp300255hSearch in Google Scholar

48. P. Gao, N. Li, X. Wang, Y. Cong, A. Wang, Mater. Lett. 111 (2013) 89.10.1016/j.matlet.2013.08.083Search in Google Scholar

49. T. Li, L. Zhao, Y. He, J. Cai, M. Luo, J. Lin, Appl. Catal. B: Environ. 129 (2013) 255.10.1016/j.apcatb.2012.09.031Search in Google Scholar


Supplementary Material

The online version of this article offers supplementary material (DOI: https://doi.org/10.1515/zpch-2018-1221).


Received: 2018-05-07
Accepted: 2018-09-12
Published Online: 2018-10-06
Published in Print: 2019-07-26

©2019 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 22.5.2024 from https://www.degruyter.com/document/doi/10.1515/zpch-2018-1221/html
Scroll to top button