Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter November 15, 2021

Approximate analytical solution for the propagation of shock wave in a mixture of small solid particles and non-ideal gas: isothermal flow

  • Gorakh Nath ORCID logo EMAIL logo

Abstract

This paper presents the development of mathematical model to obtain the approximate analytical solutions for isothermal flows behind the strong shock (blast) wave in a van der Waals gas and small solid particles mixture. The small solid particles are continuously distributed in the mixture and the equilibrium conditions for flow are maintained. To derive the analytical solutions, the physical variables such as density, pressure, and velocity are expanded using perturbation method in power series. The solutions are derived in analytical form for first approximation, and for second order approximation the set of differential equations are also obtained. The effects of an increase in the problem parameters value on the physical variables are investigated for first order approximation. A comparison is also, made between the solution of cylindrical shock and spherical shock. It is found that the fluid density and fluid pressure become zero near the point or axis of symmetry in spherical or cylindrical symmetry, respectively, and therefore a vacuum is created near the point or axis of symmetry which is in tremendous conformity with the physical condition in laboratory to generate the shock wave.


Corresponding author : Gorakh Nath, Department of Mathematics, Motilal Nehru National Institute of Technology, Allahabad 211004, India, E-mail:

  1. Author contribution: The author has accepted responsibility for the entire content of this submitted manuscript and approved submission.

  2. Research funding: None declared.

  3. Conflict of interest statement: The author declare no conflicts of interest regarding this article.

References

[1] A. Lehmann and M. Wardle, “Two-fluid dusty shocks: simple benchmarking problems and applications to protoplanetary discs,” Mon. Not. Roy. Astron. Soc., vol. 476, pp. 3185–3194, 2018. https://doi.org/10.1093/mnras/sty450.Search in Google Scholar

[2] S. C. O. Glovers and P. C. Clark, “Is molecular gas necessary for star formation,” Mon. Not. Roy. Astron. Soc., vol. 421, pp. 9–19, 2012. https://doi.org/10.1111/j.1365-2966.2011.19648.x.Search in Google Scholar

[3] S. I. Pai, S. Menon, and Z. Q. Fan, “Similarity solution of a strong shock wave propagation in a mixture of a gas and dust particles,” Int. J. Eng. Sci., vol. 18, pp. 1365–1373, 1980. https://doi.org/10.1016/0020-7225(80)90093-2.Search in Google Scholar

[4] H. Miura and I. I. Glass, “On the passage of a shock wave through a dusty gas layer,” Proc. Roy. Soc. Lond., vol. A385, pp. 85–105, 1983.10.21236/ADA114808Search in Google Scholar

[5] S. I. Popel and A. A. Gisko, “Charged dust and shock phenomena in the solar system,” Nonlinear Process Geophys., vol. 13, pp. 223–229, 2006. https://doi.org/10.5194/npg-13-223-2006.Search in Google Scholar

[6] W. Gretler and R. Regenfelder, “Strong shock wave generated by a piston moving in a dust-laden gas under isothermal condition,” Eur. J. Mech. B Fluid, vol. 24, pp. 205–218, 2005. https://doi.org/10.1016/j.euromechflu.2004.07.001.Search in Google Scholar

[7] H. Steiner and T. Hirschler, “A self-similar solution of a shock propagation in a dusty gas,” Eur. J. Mech. B Fluid, vol. 21, pp. 371–380, 2002. https://doi.org/10.1016/s0997-7546(02)01181-0.Search in Google Scholar

[8] S. I. Pai, “Two phase flows,” in Vieweg Tracts in Pure and Applied Physisc, Vol. 3, Braunschweig, Vieweg Verlag, 1977, Chap. V.10.1007/978-3-322-86348-5Search in Google Scholar

[9] S. I. Popel, V. N. Tytovich, and M. Y. Yu, “Shock structures in plasmas containing variable charge macro particles,” Astrophys. Space Sci., vol. 250, pp. 107–123, 1998. https://doi.org/10.1007/978-94-011-4758-3_7.Search in Google Scholar

[10] J. P. Vishwakarma and G. Nath, “Similarity solutions for unsteady flow behind an exponential shock in a dusty gas,” Phys. Scripta, vol. 74, pp. 493–498, 2006. https://doi.org/10.1088/0031-8949/74/4/015.Search in Google Scholar

[11] J. P. Vishwakarma and G. Nath, “A self-similar solution of a shock propagation in a mixture of a non-ideal gas and small solid particles,” Meccanica, vol. 44, pp. 239–254, 2009. https://doi.org/10.1007/s11012-008-9166-y.Search in Google Scholar

[12] J. P. Vishwakarma and G. Nath, “Spherical shock wave generated by a moving piston in mixture of a non-ideal gas and small solid particles under a gravitational field,” Commun. Nonlinear Sci. Numer. Simulat., vol. 17, pp. 2382–2393, 2012. https://doi.org/10.1016/j.cnsns.2011.10.018.Search in Google Scholar

[13] G. Nath and J. P. Vishwakarma, “Propagation of a strong spherical shock wave in a gravitating or non-gravitating dusty gas with exponentially varying density,” Acta Astronatica, vol. 123, pp. 200–213, 2016. https://doi.org/10.1016/j.actaastro.2016.03.009.Search in Google Scholar

[14] G. Nath, “Propagation of a strong cylindrical shock wave in a rotational axisymetric dusty gas with exponentially varying density,” Res. Astron. Astrophys., vol. 10, pp. 445–460, 2010. https://doi.org/10.1088/1674-4527/10/5/005.Search in Google Scholar

[15] G. Nath, “Self-similar solution of cylindrical shock wave propagation in a rotational axisymmetric mixture of a non-ideal gas and small solid particles,” Meccanica, vol. 47, pp. 1797–1814, 2012. https://doi.org/10.1007/s11012-012-9543-4.Search in Google Scholar

[16] G. Nath, “Self-similar solution for unsteady flow behind an exponential shock in an axisymmetric rotating dusty gas,” Shock Waves, vol. 24, pp. 415–428, 2014. https://doi.org/10.1007/s00193-013-0474-3.Search in Google Scholar

[17] G. Nath, “Propagation of strong cylindrical shock wave in a self-gravitating rotational axisymmetric mixture of small solid particles and perfect gas with density varying exponentially,” Acta Astronatica, vol. 162, pp. 447–460, 2019. https://doi.org/10.1016/j.actaastro.2019.06.016.Search in Google Scholar

[18] G. Nath, “Self-similar solutions for unsteady flow behind an exponential shock in an axisymmetric rotating dusty gas,” Indian J. Phys., vol. 90, pp. 1055–1068, 2016. https://doi.org/10.1007/s12648-016-0842-9.Search in Google Scholar

[19] G. Nath, “Self-similar flow behind a spherical shock wave in a non-ideal dusty gas under the gravitational field: isothermal flow,” Adv. Space Res., vol. 52, pp. 1304–1313, 2013. https://doi.org/10.1016/j.asr.2013.06.018.Search in Google Scholar

[20] L. I. Sedov, “Propagation of strong shock waves,” J. Appl. Math. Mech., vol. 10, pp. 241–250, 1946.Search in Google Scholar

[21] G. I. Taylor, “The formation of a blast wave by a very intense explosion. I. Theoretical discussion,” Proc. Roy. Soc. Lond. A, vol. 201, pp. 159–174, 1950.10.1098/rspa.1950.0049Search in Google Scholar

[22] G. I. Taylor, “The formation of a blast wave by a very intense explosion. II. The atomic explosion of 1945,” Proc. Roy. Soc. Lond. A., vol. 201, no. 1065, pp. 175–186, 1950.10.1098/rspa.1950.0050Search in Google Scholar

[23] L. Woltjer, “Supernova remnants,” Ann. Rev. Astron. Astrophys., vol. 10, pp. 129–158, 1972. https://doi.org/10.1146/annurev.aa.10.090172.001021.Search in Google Scholar

[24] A. Sakurai, “Solution of point source blast wave equation,” J. Phys. Soc. Jpn., vol. 51, pp. 1355–1356, 1982. https://doi.org/10.1143/jpsj.51.1355.Search in Google Scholar

[25] A. Sakurai, “On the propagation and structure of the blast wave, I,” J. Phys. Soc. Jpn., vol. 8, pp. 662–669, 1953. https://doi.org/10.1143/jpsj.8.662.Search in Google Scholar

[26] A. Sakurai, “On the propagation and structure of a blast wave, II,” J. Phys. Soc. Jpn., vol. 9, pp. 256–266, 1954. https://doi.org/10.1143/jpsj.9.256.Search in Google Scholar

[27] G. E. Allen, K. Chow, T. DeLaney, et al.., “On the expansion rate, age, and distance of the supernova remnant G266.2-1.2 (Vela Jr.),” Astrophys. J., vol. 798, p. 82, 2015.10.1088/0004-637X/798/2/82Search in Google Scholar

[28] D. A. Leahy and S. Ranasinghe, “Distance and evolutionary state of the supernova remnant 3C 397 (G41.1-0.3),” Astrophys. J., vol. 817, p. 74, 2016. https://doi.org/10.3847/0004-637x/817/1/74.Search in Google Scholar

[29] I. Lerche and V. M. Vasyliunas, “Mathematical theory of isothermal blast waves and the question of their applicability to supernova remnants,” Astrophys. J., vol. 210, pp. 85–99, 1976. https://doi.org/10.1086/154805.Search in Google Scholar

[30] A. Solinger, J. Buff, and S. Rappaport, “Isothermal blast wave model of supernova remnants,” Astrophys. J., vol. 201, pp. 381–386, 1975.https://doi.org/10.1086/153896.Search in Google Scholar

[31] S. I. Anisimov and O. M. Spiner, “Motion of an almost ideal gas in the presence of a strong point explosion,” J. Appl. Math. Mech., vol. 36, pp. 883–887, 1972. https://doi.org/10.1016/0021-8928(72)90144-x.Search in Google Scholar

[32] M. P. Ranga Rao and N. K. Purohit, “Self-similar piston problem in non-ideal gas,” Int. J. Eng. Sci., vol. 14, pp. 91–97, 1976. https://doi.org/10.1016/0020-7225(76)90059-8.Search in Google Scholar

[33] C. C. Wu and P. H. Roberts, “Shock wave propagation in a sonoluminescing gas bubble,” Phys. Rev. Lett., vol. 70, pp. 3424–3427, 1993. https://doi.org/10.1103/physrevlett.70.3424.Search in Google Scholar

[34] P. H. Roberts and C. C. Wu, “Structure and stability of a spherical implosion,” Phys. Lett. A, vol. 213, pp. 59–64, 1996. https://doi.org/10.1016/0375-9601(96)00082-5.Search in Google Scholar

[35] J. P. Vishwakarma and G. Nath, “Similarity solutions for the flow behind an exponential shock in a non-ideal gas,” Meccanica, vol. 42, pp. 331–339, 2007. https://doi.org/10.1007/s11012-007-9058-6.Search in Google Scholar

[36] G. Nath and J. P. Vishwakarma, “Similarity solution for the flow behind the shock wave in a non-ideal gas with heat conduction and radiation heat flux in magnetogasdynamic,” Commun. Nonlinear Sci. Numer. Simulat., vol. 19, pp. 1347–1365, 2014. https://doi.org/10.1016/j.cnsns.2013.09.009.Search in Google Scholar

[37] G. Nath, “Propagation of a cylindrical shock wave in a rotational axisymmetric isothermal flow of a non-ideal gas in magnetogasdynamics,” Ain Shams Eng. J., vol. 3, pp. 393–401, 2012. https://doi.org/10.1016/j.asej.2012.03.009.Search in Google Scholar

[38] G. Nath, “Similarity solutions for unsteady flow behind an exponential shock in an axisymmetric rotating non-ideal gas,” Meccanica, vol. 50, pp. 1701–1715, 2015. https://doi.org/10.1007/s11012-015-0115-2.Search in Google Scholar

[39] V. P. Korobeinikov, “The problem of a strong point explosion in a gas with zero temperature gradient,” Dokl. Akad. Nauk SSSR, vol. 109, pp. 271–273, 1956.Search in Google Scholar

[40] V. P. Korobeinikov, “Problems in the theory of point explosion in gases,” in Proceedings of the Steklov Institute of Mathematics, American Mathematical Society, 1976, No. 119.Search in Google Scholar

[41] D. D. Laumbach and R. F. Probstein, “Self-similar strong shocks with radiations in a decreasing exponential atmosphere,” Phys. Fluids, vol. 13, pp. 1178–1183, 1970. https://doi.org/10.1063/1.1693048.Search in Google Scholar

[42] P. L. Sachdev and S. Ashraf, “Conversing spherical and cylindrical shocks with zero temperature gradient in the rear flow-field,” J. Appl. Math. Phys., vol. 22, pp. 1095–1102, 1971. https://doi.org/10.1007/bf01590878.Search in Google Scholar

[43] T. A. Zhuravskaya and V. A. Levin, “The propagation of converging and diverging shock waves under intense heat exchange conditions,” J. Appl. Math. Mech., vol. 60, pp. 745–752, 1996. https://doi.org/10.1016/s0021-8928(96)00094-9.Search in Google Scholar

[44] G. Nath, “Approximate analytical solution for the propagation of shock waves in self-gravitating perfect gas via power series method: isothermal flow,” J. Astrophys. Astron., vol. 41, p. 21, 2020. https://doi.org/10.1007/s12036-020-09638-7.Search in Google Scholar

[45] V. P. Korobeinikov, N. S. Melnikova, and Ye. V. Ryazanov, The Theory of Point Explosion, Washington, D.C., U.S. Department of Commerce, 1962, Chap. 7 (English Translation).Search in Google Scholar

[46] D. D. Laumbach and R. F. Probstein, “A point explosion in a cold exponential atmosphere, part I,” J. Fluid Mech., vol. 35, pp. 53–75, 1969. https://doi.org/10.1017/s0022112069000966.Search in Google Scholar

[47] G. N. Naidu, M. P. R. Rao, and H. L. Yadav, “Approximate solutions for isothermal flows behind strong spherical shocks with variable energy,” Astrophys. Space Sci., vol. 89, pp. 77–88, 1983. https://doi.org/10.1007/bf01008386.Search in Google Scholar

[48] S. C. Deschner, T. F. Ilenseer, and W. J. Duschl, “Self-similar solutions to isothermal shock problems,” SIAM J. Appl. Math., vol. 78, pp. 80–103, 2018. https://doi.org/10.1137/16m109973x.Search in Google Scholar

[49] G. Nath and S. Singh, “Approximate analytical solution for shock wave in rotational axisymmetric perfect gas with azimuthal magnetic field: isothermal flow,” J. Astrophys. Astron., vol. 40, 2019, Art no. 50. https://doi.org/10.1007/s12036-019-9616-z.Search in Google Scholar

[50] G. Nath and S. Singh, “Approximate analytical solution for ionizing cylindrical shock wave in rotational axisymmetric non-ideal gas: isothermal flow,” Can. J. Phys., vol. 98, pp. 1077–1089, 2020. https://doi.org/10.1139/cjp-2019-0426.Search in Google Scholar

[51] G. Nath, “Analytical solution for unsteady flow behind ionizing shock wave in a rotational axisymmetric non-ideal gas with azimuthal or axial magnetic field,” Z. Naturforsch. A, vol. 76, pp. 265–283, 2021. https://doi.org/10.1515/zna-2020-0248.Search in Google Scholar

[52] G. Nath, “Analytical solution for unsteady adiabatic and isothermal flows behind the shock wave in a rotational axisymmetric mixture of perfect gas and small solid particles,” Z. Naturforsch. A, vol. 76, pp. 853–873, 2021. https://doi.org/10.1515/zna-2021-0022.Search in Google Scholar

[53] B. Rybakin and V. Goryachev, “Modeling of density stratification and filamentous structure formation in molecular clouds,” Comput. Fluids, vol. 173, pp. 169–194, 2018. https://doi.org/10.1016/j.compfluid.2018.03.009.Search in Google Scholar

[54] B. Rybakin, V. Goryachev, L. Stamov, et al.., “Modeling the formation of dense clumps during molecular clouds collision,” Acta Astronaut., vol. 170, pp. 586–591, 2020. https://doi.org/10.1016/j.actaastro.2020.02.026.Search in Google Scholar

[55] H. Miura and I. I. Glass, “Development of the flow induced by a piston moving impulsively in a dusty gas,” Proc. Roy. Soc. Lond. A, vol. 397, pp. 295–309, 1985.10.1098/rspa.1985.0016Search in Google Scholar

[56] F. H. Shu, “Self-similar collapse of isothermal spheres and star formation,” APJ (Acta Pathol. Jpn.), vol. 214, pp. 488–497, 1977. https://doi.org/10.1086/155274.Search in Google Scholar

Received: 2021-07-08
Accepted: 2021-10-14
Published Online: 2021-11-15
Published in Print: 2022-02-23

© 2021 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 22.5.2024 from https://www.degruyter.com/document/doi/10.1515/zna-2021-0196/html
Scroll to top button