Skip to content
Licensed Unlicensed Requires Authentication Published by Oldenbourg Wissenschaftsverlag August 23, 2018

A modified approach for automated reference point determination of SLR and VLBI telescopes

First investigations at Satellite Observing System Wettzell

Ein modifiziertes Verfahren zur automatisierten Referenzpunktbestimmung von SLR- und VLBI-Teleskopen
Untersuchungen am Satellite Observing System Wettzell
  • Michael Lösler

    Michael Lösler studied geodesy at University of Applied Sciences Neubrandenburg and graduated with a diploma in 2006. He developed a new mathematical model for automated reference point determination during his employment as scientific assistant of the DFG project: high-precision real-time reference point determination of VLBI radio telescopes for combining IVS and IGS reference frames at Karlsruhe Institut of Technology. He is a member of the IERS (International Earth Rotation and Reference System) Working Group on Site Survey and Co-location. Since 2014, he is employed at Frankfurt University of Applied Sciences where he keeps working on automated metrological methods for reference point determinations.

    EMAIL logo
    , Cornelia Eschelbach

    Cornelia Eschelbach studied geodesy at the Karlsruhe Institute of Technology between 1997 and 2002. Afterwards she was employed at the Geodetic Institute of the Karlsruhe Institute of Technology (chair for surveying and geodetic sensors) and received her Ph. D. on the subject determination of the refraction correction by modeling the momentum and heat flux in the roughness layer. In 2010 she was appointed on the professorship of surveying and applied geodesy at the Frankfurt University of Applied Sciences. Three years later she founded the Laboratory for Industrial Metrology that is focused on large volume metrology and parameter estimation.

    and Stefan Riepl

    Stefan Riepl studied physics at the University of Regensburg and acquired a Ph. D. at the Technical University of Munich with a thesis focusing especially on two color satellite laser ranging. After that he joined the Federal Agency for Cartography and Geodesy and in the following years was delegated to the Universidad de Concepcion, Chile for the setup and operation of the Satellite Laser Ranging module of the Transportable Integrated Geodetic Observatory (TIGO). Later he returned to the Federal Agency for Cartography and Geodesy to design and develop the Satellite Observing System Wettzell (SOS-W).

From the journal tm - Technisches Messen

Abstract

The International Terrestrial Reference Frame (ITRF) is derived by combining several space geodetic techniques. Basically, a meaningful combination of the geodesic space techniques is impossible without further geometrical information, i. e. local-ties. Local-tie vectors are defined between the geometrical reference points of space geodetic techniques at co-location stations. These local-ties are introduced during the inter-technique combination process, to overcome the weak physical connection between the space geodetic techniques. In particular, the determination of the reference point of radio telescopes or laser telescopes is a challenging task and requires indirect methods. Moreover, the Global Geodetic Observing System (GGOS) strives for an automated and continued reference point determination with sub-millimeter accuracy, because deviations in local-ties bias global results.

This investigation presents a modified approach for automated reference point determination. The new approach extends the prior work of Lösler but evades the synchronization between the terrestrial instrument and the telescope. Thus, synchronization errors are omitted and the technical effort is reduced. A proof of concept was carried out at Geodetic Observatory Wettzell in 2018. Using a high-precision, mobile laser-tracker, the reference point of the Satellite Observing System Wettzell (SOS-W) was derived. An extended version of the in-house developed software package HEIMDALL was employed for a mostly automated data collection. To evaluate the estimated reference point, the derived results are compared with the results of two approved models.

Zusammenfassung

Der International Terrestrial Reference Frame (ITRF) wird aus der Kombination verschiedener geodätischer Raumtechniken bestimmt. Aufgrund fehlender physischer Verbindungen zwischen den Messverfahren der Raumtechniken ist eine kombinierte Auswertung nur durch geometrische Zusatzinformationen sinnvoll möglich. Sogenannte local-tie Vektoren, die zwischen den geometrischen Referenzpunkten der Raumtechniken definiert sind, werden hierzu an Co-Location Stationen mit übergeordneter Genauigkeit bestimmt und in der globalen Lösung berücksichtigt. Insbesondere die Bestimmung der Referenzpunkte an Radio- und Laserteleskopen ist herausfordernd, da die Referenzpunkte nicht direkt taktil gemessen werden können. Weiterhin strebt das Global Geodetic Observing System (GGOS) eine automatisierte und kontinuierliche Bestimmung der Referenzpunkte mit Submillimetergenauigkeit an.

In dieser Arbeit wird ein modifiziertes Verfahren zur automatisierten Referenzpunktbestimmung vorgeschlagen, welches den bisherigen Ansatz von Lösler erweitert, hierbei aber das Problem der Synchronisation zwischen terrestrischen Instrument und Teleskop umgeht, sodass Synchronisationsfehler vermieden werden, und sich der technische Aufwand verringert. Am Geodätischen Observatorium Wettzell (GOW) wurde 2018 eine Messkampagne initiiert, um die Tauglichkeit des neuen Ansatzes zu evaluieren. Hierbei wurde mit einem hochpräzisen, mobilen Lasertracker der Referenzpunkt des Satellite Observing System Wettzell (SOS-W) bestimmt. Die Messung erfolgte in Anlehnung an GGOS weitgehend automatisiert mit dem selbst entwickelten System HEIMDALL. Die Ergebnisse des neuen Ansatzes werden mit den Lösungen von zwei weiteren, bewährten Modellen verglichen.

About the authors

Michael Lösler

Michael Lösler studied geodesy at University of Applied Sciences Neubrandenburg and graduated with a diploma in 2006. He developed a new mathematical model for automated reference point determination during his employment as scientific assistant of the DFG project: high-precision real-time reference point determination of VLBI radio telescopes for combining IVS and IGS reference frames at Karlsruhe Institut of Technology. He is a member of the IERS (International Earth Rotation and Reference System) Working Group on Site Survey and Co-location. Since 2014, he is employed at Frankfurt University of Applied Sciences where he keeps working on automated metrological methods for reference point determinations.

Cornelia Eschelbach

Cornelia Eschelbach studied geodesy at the Karlsruhe Institute of Technology between 1997 and 2002. Afterwards she was employed at the Geodetic Institute of the Karlsruhe Institute of Technology (chair for surveying and geodetic sensors) and received her Ph. D. on the subject determination of the refraction correction by modeling the momentum and heat flux in the roughness layer. In 2010 she was appointed on the professorship of surveying and applied geodesy at the Frankfurt University of Applied Sciences. Three years later she founded the Laboratory for Industrial Metrology that is focused on large volume metrology and parameter estimation.

Stefan Riepl

Stefan Riepl studied physics at the University of Regensburg and acquired a Ph. D. at the Technical University of Munich with a thesis focusing especially on two color satellite laser ranging. After that he joined the Federal Agency for Cartography and Geodesy and in the following years was delegated to the Universidad de Concepcion, Chile for the setup and operation of the Satellite Laser Ranging module of the Transportable Integrated Geodetic Observatory (TIGO). Later he returned to the Federal Agency for Cartography and Geodesy to design and develop the Satellite Observing System Wettzell (SOS-W).

Acknowledgment

The authors thank Swetlana Mähler for technical support and providing the adapters of the cat eye reflectors, which enabled a free choice of positioning at the telescope structure.

References

1. Altamimi, Z., Collilieux, X., and Métivier, L. ITRF2008: an improved solution of the international terrestrial reference frame. Journal of Geodesy 85, 8 (2011), 457–473. doi: 10.1007/s00190-011-0444-4.10.1007/s00190-011-0444-4Search in Google Scholar

2. Altamimi, Z., Rebischung, P., Métivier, L., and Collilieux, X. ITRF2014: A new release of the International Terrestrial Reference Frame modeling nonlinear station motions. Journal of Geophysical Research (Solid Earth) 121 (2016), 6109–6131. doi: 10.1002/2016JB013098.10.1002/2016JB013098Search in Google Scholar

3. Bergstrand, S., Collilieux, X., Dawson, J., Haas, R., Long, J., Pavlis, E. C., Saunier, J., Schmid, R., and Nothnagel, A. Resolution on the nomenclature of space geodetic reference points and local tie measurements. Tech. rep., Earth Rotation and Reference Systems Service (IERS), Working Group on Site Survey and Co-location, 2014.Search in Google Scholar

4. Bjerhammar, A. Theory of Errors and Generalized Matrix Inverses. Elsevier Science, Amsterdam, 1973.Search in Google Scholar

5. Bruni, S. Combination of GNSS and SLR measurements: contribution to the realization of the terrestrial reference frame. Dissertation, Department of Physics and Astronomy of the University of Bologna, 2016.Search in Google Scholar

6. Combrinck, W. L., and Merry, C. L. Very long baseline interferometry antenna axis offset and intersection determination using GPS. Journal of Geophysical Research 102, B11 (1997), 24741–24744. doi: 10.1029/97JB02081.10.1029/97JB02081Search in Google Scholar

7. Dawson, J., Sarti, P., Johnston, G. M., and Vittuari, L. Indirect approach to invariant point determination for SLR and VLBI systems: an assessment. Journal of Geodesy 81, 6–8 (2007), 433–441. doi: 10.1007/s00190-006-0125-x.10.1007/s00190-006-0125-xSearch in Google Scholar

8. Eschelbach, C., and Haas, R. The IVS-reference point at Onsala – high end solution for a real 3D-determination. In Proceedings of the 16th Working Meeting on European VLBI for Geodesy and Astrometry (2003), Schwegmann, W., and Thorandt, V., Eds., Bundesamt für Kartographie und Geodäsie, pp. 109–118.Search in Google Scholar

9. Glaser, S., Fritsche, M., Sośnica, K., C. J. Rodríguez-Solano, Wang, K., U. Dach Rand Hugentobler, Rothacher, M., and Dietrich, R. Validation of components of local ties. In REFAG 2014 – Proceedings of the IAG Commission 1 Symposium Kirchberg, Luxembourg, 13–17 October, 2014 (2015), van Dam, T., Ed., vol. 146 of International Association of Geodesy Symposia, Springer, pp. 21–27. doi: 10.1007/1345_2015_190.10.1007/1345_2015_190Search in Google Scholar

10. Hexagon. Leica Absolute Tracker AT401 – Absolutely portable – Specifications. Tech. rep., Hexagon Metrology, 2012.Search in Google Scholar

11. Höpcke, W. Fehlerlehre und Ausgleichungsrechnung. de Gruyter, Berlin, 1980.10.1515/9783110838206Search in Google Scholar

12. Illner, I. Datumsfestlegung in freien Netzen. Dissertationen, Reihe C, vol. 309, Deutsche Geodätische Kommission, München, 1985.Search in Google Scholar

13. Kallio, U., Lösler, M., Bergstrand, S., Haas, R., and Eschelbach, C. Automated simultaneous local ties with GNSS and robot tachymeter. In Proceedings of the 9th IVS General Meeting, New Horizons with VGOS (2016), Behrend, D., Baver, K. D., and Armstrong, K. L., Eds., pp. 154–158.Search in Google Scholar

14. Kallio, U., and Poutanen, M. Can we really promise a mm-accuracy for the local ties on a geo-VLBI antenna. In Geodesy for Planet Earth (2012), Kenyon, S., Pacino, M., and Marti, U., Eds., vol. 136, Springer, pp. 35–42. doi: 10.1007/978-3-642-20338-1_5.10.1007/978-3-642-20338-1_5Search in Google Scholar

15. Klügel, T., Mähler, S., and Schade, C. Ground survey and local ties at the geodetic observatory ground survey and local ties at the geodetic observatory. In Proceedings of the 17th International Workshop on Laser Ranging (2012), vol. 48, Mitt. BKG, Frankfurt, pp. 127–131.Search in Google Scholar

16. Koch, K.-R. Parameter Estimation and Hypothesis Testing in Linear Models. 2nd edn. Springer, Berlin, 1999. doi: 10.1007/978-3-662-03976-2.10.1007/978-3-662-03976-2Search in Google Scholar

17. Koch, K.-R. Robust estimations for the nonlinear Gauss Helmert model by the expectation maximization algorithm. Journal of Geodesy 88, 3 (2014), 263–271. doi: 10.1007/s00190-013-0681-9.10.1007/s00190-013-0681-9Search in Google Scholar

18. Lanotte, R., Pirri, M., and Bianco, G.. Matera site survey and VLBI invariant point determination. In Proceedings of the 5th IVS General Meeting – Measuring the Future (2008), Finkelstein, A., and Behrend, D., Eds., pp. 87–92.Search in Google Scholar

19. Lehmann, R., and Lösler, M. Congruence analysis of geodetic networks – hypothesis tests versus model selection by information criteria. Journal of Applied Geodesy 11, 4 (2017), 271–283. doi: 10.1515/jag-2016-0049.10.1515/jag-2016-0049Search in Google Scholar

20. Loser, R. Laser-Tracking-System für 3D-Messungen bewegter Objekte. tm – Technisches Messen 60, 5 (1993), 198–202. doi: 10.1524/teme.1993.60.5.198.10.1524/teme.1993.60.5.198Search in Google Scholar

21. Lossin, T., Lösler, M., Neidhardt, A., Lehmann, R., and Mähler, S.. The usage of recursive parameter estimation in automated reference point determination. In Proceedings of the 8th IVS General Meeting – VGOS: The New VLBI Network (2014), Behrend, D., Baver, K. D., and Armstrong, K. L., Eds., Science Press Beijing, pp. 344–348.Search in Google Scholar

22. Lösler, M. Reference point determination with a new mathematical model at the 20 m VLBI radio telescope in Wettzell. Journal of Applied Geodesy 2, 4 (2008), 233–238. doi: 10.1515/JAG.2008.026.10.1515/JAG.2008.026Search in Google Scholar

23. Lösler, M. New mathematical model for reference point determination of an azimuth-elevation type radio telescope. Journal of Surveying Engineering 135, 4 (2009), 131–135. doi: 10.1061/(ASCE)SU.1943-5428.0000010.10.1061/(ASCE)SU.1943-5428.0000010Search in Google Scholar

24. Lösler, M., Eschelbach, C., and Jarecki, F. Auswerte- und Analysestrategie für automatisierte untertägige Überwachungsmessungen. In 19. Geokinematischer Tag (2018), Benndorf, J., Ed., vol. 2018-1, Schriftenreihe des Institutes für Markscheidewesen und Geodäsie der TU Freiberg, pp. 64–78.Search in Google Scholar

25. Lösler, M., Haas, R., and Eschelbach, C. Automated and continual determination of radio telescope reference points with sub-mm accuracy: results from a campaign at the Onsala Space Observatory. Journal of Geodesy 87, 8 (2013), 791–804. doi: 10.1007/s00190-013-0647-y.10.1007/s00190-013-0647-ySearch in Google Scholar

26. Lösler, M., Haas, R., and Eschelbach, C. Terrestrial monitoring of a radio telescope reference point using comprehensive uncertainty budgeting. Investigations during CONT14 at the Onsala Space Observatory. Journal of Geodesy 90, 5 (2016), 467–486. doi: 10.1007/s00190-016-0887-8.10.1007/s00190-016-0887-8Search in Google Scholar

27. Mähler, S., Klügel, T., Lösler, M., and Schüler, T. Permanentes Referenzpunkt-Monitoring der TWIN Radioteleskope am Geodätischen Observatorium Wettzell. avn – Zeitschrift für alle Bereiche der Geodäsie und Geoinformation 125, 7 (2018), 210–219.Search in Google Scholar

28. Neidhardt, A., Eckl, J., Kirschbauer, K., Schönberger, M., Leidig, A., and Böer, A. Current status of automation of the SLR-systems at the Geodetic Observatory Wettzell. in: Proceedings of the 20th international workshop on laser ranging (2017), ILRS.Search in Google Scholar

29. Nilsson, T., J. A. Mora-Diaz, V. Raposo-Pulido, Heinkelmann, R., Karbon, M., Liu, L., Lu, C., Soja, B., Xu, M., and Schuh, H. Antenna axis offsets and their impact on VLBI derived reference frames. In REFAG 2014 – Proceedings of the IAG Commission 1 Symposium Kirchberg, Luxembourg, 13–17 October, 2014 (2015), van Dam, T., Ed., vol. 146 of International Association of Geodesy Symposia, Springer, pp. 53–58. doi: 10.1007/1345_2015_126.10.1007/1345_2015_126Search in Google Scholar

30. Ning, T., Haas, R., and Elgered, G. Determination of the local tie vector between the VLBI and GNSS reference points at Onsala using GPS measurements. Journal of Geodesy 89, 7 (2015), 711–723. doi: 10.1007/s00190-015-0809-1.10.1007/s00190-015-0809-1Search in Google Scholar

31. Nitschke, M., and Knickmeyer, E. H. Rotation parameters – a survey of techniques. Journal of Surveying Engineering 126, 3 (2000), 83–105. doi: 10.1061/(ASCE)0733-9453(2000)126:3(83).10.1061/(ASCE)0733-9453(2000)126:3(83)Search in Google Scholar

32. J-C Poyard, Collilieux, X., J-M Muller, Garayt, B., and Saunier, J.. IGN best practice for surveying instrument reference points at ITRF co-location sites. Tech. Rep. 39, Earth Rotation and Reference Systems Service (IERS), Verlag des Bundesamts für Kartographie und Geodäsie, Frankfurt am Main, 2017.Search in Google Scholar

33. Riepl, S., Schlüter, W., Dassing, R., Haufe, K.-H., Brandl, N., Lauber, P., and Neidhardt, A. The SOS-W – A two colour kilohertz SLR system. In Proceedings of the 14th International Laser Ranging Workshop (2005), Ministerio De Defensa, Real Instituto y Observatorio de la Armada (ROA).Search in Google Scholar

34. Rothacher, M., Beutler, G., Behrend, D., Donnellan, A., Hinderer, J., Ma, C., Noll, C., Oberst, J., Pearlman, M., H-P Plag, Richter, B., Schöne, T., Tavernier, G., and Woodworth, P. L. The future global geodetic observing system. In Global Geodetic Observing System – Meeting the Requirements of a Global Society on a Changing Planet in 2020 (2009), Plag, H.-P. and Pearlman, M., Eds., Springer, pp. 237–272. doi: 10.1007/978-3-642-02687-4.10.1007/978-3-642-02687-4Search in Google Scholar

35. Sarti, P., Sillard, P., and Vittuari, L. Surveying co-located space-geodetic instruments for ITRF computation. Journal of Geodesy 78, 3 (2004), 210–222. doi: 10.1007/s00190-004-0387-0.10.1007/s00190-004-0387-0Search in Google Scholar

36. Schlüter, W., Brandl, N., Dassing, R., Hase, H., Klügel, T., Kilger, R., Lauber, P., Neidhardt, A., Plötz, C., Riepl, S., and Schreiber, U.. Fundamentalstation Wettzell – ein geodätisches Observatorium. zfv – Zeitschrift für Geodäsie, Geoinformation und Landmanagement 132, 3 (2007), 158–167.Search in Google Scholar

37. Schuh, H., König, R., Ampatzidis, D., Glaser, S., Flechtner, F., Heinkelmann, R., and Nilsson, T. GGOS-SIM: Simulation of the reference frame for the global geodetic observing system. in: REFAG 2014 – Proceedings of the IAG Commission 1 Symposium Kirchberg, Luxembourg, 13–17 October, 2014 (2015), van Dam, T., Ed., vol. 146 of International Association of Geodesy Symposia, Springer, pp. 95–100. doi: 10.1007/1345_2015_217.10.1007/1345_2015_217Search in Google Scholar

38. Seitz, M., Angermann, D., Bloßfeld, M., Drewes, H., and Gerstl, M. The 2008 DGFI realization of the ITRS: DTRF2008. Journal of Geodesy 86, 12 (2012), 1097–1123. doi: 10.1007/s00190-012-0567-2.10.1007/s00190-012-0567-2Search in Google Scholar

39. Thaller, D., Dach, R., Seitz, M., Beutler, G., Mareyen, M., and Richter, B.. Combination of GNSS and SLR observations using satellite co-locations. Journal of Geodesy 85, 5 (2011), 257–272. doi: 10.1007/s00190-010-0433-z.10.1007/s00190-010-0433-zSearch in Google Scholar

40. United-Nations. Resolution on A Global Geodetic Reference Frame for Sustainable Development, sixty-ninth session, agenda item 9, a/69/l.53 ed., 2015.Search in Google Scholar

41. Yongbing, L., Guoxiong, Z., and Zhen, L. DESIGN NOTE: An improved cat’s-eye retroreflector used in a laser tracking interferometer system. Measurement Science and Technology 14, 36 (2003), N36–N40. doi: 10.1088/0957-0233/14/6/404.10.1088/0957-0233/14/6/404Search in Google Scholar

42. Zuercher, W., Loser, R., and Kyle, S. A. Improved reflector for interferometric tracking in three dimensions. Optical Engineering 34, 9 (1995), 2740–2743. doi: 10.1117/12.205679.10.1117/12.205679Search in Google Scholar

Received: 2018-07-11
Accepted: 2018-07-28
Published Online: 2018-08-23
Published in Print: 2018-10-25

© 2018 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 1.5.2024 from https://www.degruyter.com/document/doi/10.1515/teme-2018-0053/html
Scroll to top button