Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter July 6, 2013

Serine-arginine protein kinases: new players in neurodegenerative diseases?

  • Chi Bun Chan

    Chi Bun Chan received his PhD in Biochemistry from the Chinese University of Hong Kong in 2003. He then perused his postdoctoral training at the Chinese University of Hong Kong (2003–2005) and Emory University (2005–2010). In mid 2010, he joined the Department of Pathology and Laboratory Medicine of Emory University as an Assistant Professor. His research focuses on identifying novel signaling pathways leading to neurodegenerative diseases and metabolic syndrome.

    EMAIL logo
    and Keqiang Ye

    Ye received his graduate training in Biochemistry at Emory University, Atlanta, Georgia, USA (PhD 1998) and he received his postdoctoral training with Dr. Solomon H. Snyder at Johns Hopkins University (1998–2001). At the end of 2001, he joined the faculty of Emory University School of Medicine (Assistant Professor in Department of Pathology and Laboratory Medicine, 2001–2007; Associate professor, 2007–2010; Full Professor, 2010-Present). He is the recipient of numerous professional honors, including the Distinguished Scientist Award from the Sontag Foundation (2003) and American Cancer Research Scholar (2004), etc. He has made a unique contribution to nuclear PI3K signalings and established the nuclear signaling of NGF in promoting neuronal survival. Moreover, he identified numerous novel small molecular TrkA and TrkB agonists. These small compounds exhibit potent neurotrophic effect and display great therapeutic potentials for various neurological diseases.

    EMAIL logo

Abstract

Serine-arginine protein kinases (SRPKs) are a group of serine kinases that recognize and phosphorylate protein substrates with serine-arginine dipeptide repeats. They are mainly involved in regulating pre-mRNA splicing via phosphorylating splicing factors, such as ASF/SF2 and SC35. Nevertheless, the functions of SRPKs in the nervous system are sketchy, although the kinases have significant expression in neurons. Our recent studies demonstrate that one of the SRPK members, SRPK2, participates in the neuronal survival, cell cycle progression, and memory determination in Alzheimer’s disease. SRPKs are thus a group of unrecognized proteins that may facilitate the pathological progression of disorders caused by neurodegeneration. In this review, we will update our knowledge on SRPKs’ functions in various cellular activities and discuss their potential role in neurodegenerative disorders.


Corresponding authors: Chi Bun Chan and Keqiang Ye, Laboratory Medicine, Department of Pathology, Emory University School of Medicine, 615 Michael Street, Atlanta, GA 30322, USA

About the authors

Chi Bun Chan

Chi Bun Chan received his PhD in Biochemistry from the Chinese University of Hong Kong in 2003. He then perused his postdoctoral training at the Chinese University of Hong Kong (2003–2005) and Emory University (2005–2010). In mid 2010, he joined the Department of Pathology and Laboratory Medicine of Emory University as an Assistant Professor. His research focuses on identifying novel signaling pathways leading to neurodegenerative diseases and metabolic syndrome.

Keqiang Ye

Ye received his graduate training in Biochemistry at Emory University, Atlanta, Georgia, USA (PhD 1998) and he received his postdoctoral training with Dr. Solomon H. Snyder at Johns Hopkins University (1998–2001). At the end of 2001, he joined the faculty of Emory University School of Medicine (Assistant Professor in Department of Pathology and Laboratory Medicine, 2001–2007; Associate professor, 2007–2010; Full Professor, 2010-Present). He is the recipient of numerous professional honors, including the Distinguished Scientist Award from the Sontag Foundation (2003) and American Cancer Research Scholar (2004), etc. He has made a unique contribution to nuclear PI3K signalings and established the nuclear signaling of NGF in promoting neuronal survival. Moreover, he identified numerous novel small molecular TrkA and TrkB agonists. These small compounds exhibit potent neurotrophic effect and display great therapeutic potentials for various neurological diseases.

Work in the authors’ laboratory is supported by a grant from NIH (NS060680) to K. Ye.

References

Allen, J.W., Eldadah, B.A., Huang, X., Knoblach, S.M., and Faden, A.I. (2001). Multiple caspases are involved in beta-amyloid-induced neuronal apoptosis. J. Neurosci. Res. 65, 45–53.10.1002/jnr.1126Search in Google Scholar

Auffret, A., Gautheron, V., Mattson, M.P., Mariani, J., and Rovira, C. (2010). Progressive age-related impairment of the late long-term potentiation in Alzheimer’s disease presenilin-1 mutant knock-in mice. J. Alzheimers Dis. 19, 1021–1033.10.3233/JAD-2010-1302Search in Google Scholar

Baloyannis, S.J. (2009). Dendritic pathology in Alzheimer’s disease. J. Neurol. Sci. 283, 153–157.10.1016/j.jns.2009.02.370Search in Google Scholar

Baumann, K., Mandelkow, E.M., Biernat, J., Piwnica-Worms, H., and Mandelkow, E. (1993). Abnormal Alzheimer-like phosphorylation of tau-protein by cyclin-dependent kinases cdk2 and cdk5. FEBS Lett. 336, 417–424.10.1016/0014-5793(93)80849-PSearch in Google Scholar

Behl, C., Davis, J.B., Lesley, R., and Schubert, D. (1994). Hydrogen peroxide mediates amyloid beta protein toxicity. Cell 77, 817–827.10.1016/0092-8674(94)90131-7Search in Google Scholar

Bell, K.F., Bennett, D.A., and Cuello, A.C. (2007). Paradoxical upregulation of glutamatergic presynaptic boutons during mild cognitive impairment. J. Neurosci. 27, 10810–10817.10.1523/JNEUROSCI.3269-07.2007Search in Google Scholar PubMed PubMed Central

Bhaskar, K., Miller, M., Chludzinski, A., Herrup, K., Zagorski, M., and Lamb, B.T. (2009). The PI3K-Akt-mTOR pathway regulates Abeta oligomer induced neuronal cell cycle events. Mol. Neurodegener. 4, 14.10.1186/1750-1326-4-14Search in Google Scholar PubMed PubMed Central

Black, M.M., Slaughter, T., Moshiach, S., Obrocka, M., and Fischer, I. (1996). Tau is enriched on dynamic microtubules in the distal region of growing axons. J. Neurosci. 16, 3601–3619.10.1523/JNEUROSCI.16-11-03601.1996Search in Google Scholar

Blaustein, M., Pelisch, F., Tanos, T., Munoz, M.J., Wengier, D., Quadrana, L., Sanford, J.R., Muschietti, J.P., Kornblihtt, A.R., Caceres, J.F., et al. (2005). Concerted regulation of nuclear and cytoplasmic activities of SR proteins by AKT. Nat. Struct. Mol. Biol. 12, 1037–1044.10.1038/nsmb1020Search in Google Scholar PubMed

Busser, J., Geldmacher, D.S., and Herrup, K. (1998). Ectopic cell cycle proteins predict the sites of neuronal cell death in Alzheimer’s disease brain. J. Neurosci. 18, 2801–2807.10.1523/JNEUROSCI.18-08-02801.1998Search in Google Scholar

Chun, J., Kwon, T., Lee, E.J., Kim, C.H., Han, Y.S., Hong, S.K., Hyun, S., and Kang, S.S. (2004). 14-3-3 Protein mediates phosphorylation of microtubule-associated protein tau by serum- and glucocorticoid-induced protein kinase 1. Mol. Cells 18, 360–368.Search in Google Scholar

Correas, I., Diaz-Nido, J., and Avila, J. (1992). Microtubule-associated protein tau is phosphorylated by protein kinase C on its tubulin binding domain. J. Biol. Chem. 267, 15721–15728.10.1016/S0021-9258(19)49595-1Search in Google Scholar

Currais, A., Hortobagyi, T., and Soriano, S. (2009). The neuronal cell cycle as a mechanism of pathogenesis in Alzheimer’s disease. Aging (Albany NY) 1, 363–371.10.18632/aging.100045Search in Google Scholar PubMed PubMed Central

D’Souza, I. and Schellenberg, G.D. (2006). Arginine/serine-rich protein interaction domain-dependent modulation of a tau exon 10 splicing enhancer: altered interactions and mechanisms for functionally antagonistic FTDP-17 mutations Delta280K AND N279K. J. Biol. Chem. 281, 2460–2469.10.1074/jbc.M505809200Search in Google Scholar PubMed

Daniilidou, M., Tsolaki, M., Giannakouros, T., and Nikolakaki, E. (2011). Detection of elevated antibodies against SR protein kinase 1 in the serum of Alzheimer’s disease patients. J. Neuroimmunol. 238, 67–72.10.1016/j.jneuroim.2011.06.013Search in Google Scholar PubMed

de Silva, R., Lashley, T., Gibb, G., Hanger, D., Hope, A., Reid, A., Bandopadhyay, R., Utton, M., Strand, C., Jowett, T., et al. (2003). Pathological inclusion bodies in tauopathies contain distinct complements of tau with three or four microtubule-binding repeat domains as demonstrated by new specific monoclonal antibodies. Neuropathol. Appl. Neurobiol. 29, 288–302.10.1046/j.1365-2990.2003.00463.xSearch in Google Scholar PubMed

Del Bo, R., Ghezzi, S., Scarpini, E., Bresolin, N., and Comi, G.P. (2009). VEGF genetic variability is associated with increased risk of developing Alzheimer’s disease. J. Neurol. Sci. 283, 66–68.10.1016/j.jns.2009.02.318Search in Google Scholar PubMed

Delisle, M.B., Murrell, J.R., Richardson, R., Trofatter, J.A., Rascol, O., Soulages, X., Mohr, M., Calvas, P., and Ghetti, B. (1999). A mutation at codon 279 (N279K) in exon 10 of the Tau gene causes a tauopathy with dementia and supranuclear palsy. Acta. Neuropathol. 98, 62–77.10.1007/s004010051052Search in Google Scholar PubMed

Dephoure, N., Zhou, C., Villen, J., Beausoleil, S.A., Bakalarski, C.E., Elledge, S.J., and Gygi, S.P. (2008). A quantitative atlas of mitotic phosphorylation. Proc. Natl. Acad. Sci. USA 105, 10762–10767.10.1073/pnas.0805139105Search in Google Scholar PubMed PubMed Central

Ding, J.H., Zhong, X.Y., Hagopian, J.C., Cruz, M.M., Ghosh, G., Feramisco, J., Adams, J.A., and Fu, X.D. (2006). Regulated cellular partitioning of SR protein-specific kinases in mammalian cells. Mol. Biol. Cell 17, 876–885.10.1091/mbc.e05-10-0963Search in Google Scholar PubMed PubMed Central

Drechsel, D.N., Hyman, A.A., Cobb, M.H., and Kirschner, M.W. (1992). Modulation of the dynamic instability of tubulin assembly by the microtubule-associated protein tau. Mol. Biol. Cell 3, 1141–1154.10.1091/mbc.3.10.1141Search in Google Scholar PubMed PubMed Central

Drewes, G., Trinczek, B., Illenberger, S., Biernat, J., Schmitt-Ulms, G., Meyer, H.E., Mandelkow, E.M., and Mandelkow, E. (1995). Microtubule-associated protein/microtubule affinity-regulating kinase (p110mark). A novel protein kinase that regulates tau-microtubule interactions and dynamic instability by phosphorylation at the Alzheimer-specific site serine 262. J. Biol. Chem. 270, 7679–7688.Search in Google Scholar

Eckert, A., Steiner, B., Marques, C., Leutz, S., Romig, H., Haass, C., and Muller, W.E. (2001). Elevated vulnerability to oxidative stress-induced cell death and activation of caspase-3 by the Swedish amyloid precursor protein mutation. J. Neurosci. Res. 64, 183–192.10.1002/jnr.1064Search in Google Scholar

Edmond, V., Moysan, E., Khochbin, S., Matthias, P., Brambilla, C., Brambilla, E., Gazzeri, S., and Eymin, B. (2011). Acetylation and phosphorylation of SRSF2 control cell fate decision in response to cisplatin. EMBO J. 30, 510–523.10.1038/emboj.2010.333Search in Google Scholar

Erdo, F., Trapp, T., Mies, G., and Hossmann, K.A. (2004). Immunohistochemical analysis of protein expression after middle cerebral artery occlusion in mice. Acta Neuropathol. 107, 127–136.10.1007/s00401-003-0789-8Search in Google Scholar

Esmaeli-Azad, B., McCarty, J.H., and Feinstein, S.C. (1994). Sense and antisense transfection analysis of tau function: tau influences net microtubule assembly, neurite outgrowth and neuritic stability. J. Cell Sci. 107 (Pt 4), 869–879.10.1242/jcs.107.4.869Search in Google Scholar

Falke, E., Nissanov, J., Mitchell, T.W., Bennett, D.A., Trojanowski, J.Q., and Arnold, S.E. (2003). Subicular dendritic arborization in Alzheimer’s disease correlates with neurofibrillary tangle density. Am. J. Pathol. 163, 1615–1621.10.1016/S0002-9440(10)63518-3Search in Google Scholar

Forstl, H. and Kurz, A. (1999). Clinical features of Alzheimer’s disease. Eur. Arch. Psychiatry Clin. Neurosci. 249, 288–290.10.1007/s004060050101Search in Google Scholar

Freeman, R.S., Estus, S., and Johnson, E.M., Jr. (1994). Analysis of cell cycle-related gene expression in postmitotic neurons: selective induction of Cyclin D1 during programmed cell death. Neuron 12, 343–355.10.1016/0896-6273(94)90276-3Search in Google Scholar

Fukuhara, T., Hosoya, T., Shimizu, S., Sumi, K., Oshiro, T., Yoshinaka, Y., Suzuki, M., Yamamoto, N., Herzenberg, L.A., and Hagiwara, M. (2006). Utilization of host SR protein kinases and RNA-splicing machinery during viral replication. Proc. Natl. Acad. Sci. USA 103, 11329–11333.10.1073/pnas.0604616103Search in Google Scholar PubMed PubMed Central

Gao, L., Wang, J., Wang, Y., and Andreadis, A. (2007). SR protein 9G8 modulates splicing of tau exon 10 via its proximal downstream intron, a clustering region for frontotemporal dementia mutations. Mol. Cell. Neurosci. 34, 48–58.10.1016/j.mcn.2006.10.004Search in Google Scholar PubMed PubMed Central

Gengler, S., Hamilton, A., and Holscher, C. (2010). Synaptic plasticity in the hippocampus of a APP/PS1 mouse model of Alzheimer’s disease is impaired in old but not young mice. PLoS One 5, e9764.10.1371/journal.pone.0009764Search in Google Scholar PubMed PubMed Central

Ghosh, G. and Adams, J.A. (2011). Phosphorylation mechanism and structure of serine-arginine protein kinases. FEBS J. 278, 587–597.10.1111/j.1742-4658.2010.07992.xSearch in Google Scholar

Goedert, M., Cohen, E.S., Jakes, R., and Cohen, P. (1992). p42 MAP kinase phosphorylation sites in microtubule-associated protein tau are dephosphorylated by protein phosphatase 2A1. Implications for Alzheimer’s disease [corrected]. FEBS Lett. 312, 95–99.10.1016/0014-5793(92)81418-LSearch in Google Scholar

Greenwood, J.A., Scott, C.W., Spreen, R.C., Caputo, C.B., and Johnson, G.V. (1994). Casein kinase II preferentially phosphorylates human tau isoforms containing an amino-terminal insert. Identification of threonine 39 as the primary phosphate acceptor. J. Biol. Chem. 269, 4373–4380.10.1016/S0021-9258(17)41790-XSearch in Google Scholar

Grundke-Iqbal, I., Iqbal, K., Tung, Y.C., Quinlan, M., Wisniewski, H.M., and Binder, L.I. (1986). Abnormal phosphorylation of the microtubule-associated protein tau (tau) in Alzheimer cytoskeletal pathology. Proc. Natl. Acad. Sci. USA 83, 4913–4917.10.1073/pnas.83.13.4913Search in Google Scholar

Gu, Z., Liu, W., and Yan, Z. (2009). {beta}-Amyloid impairs AMPA receptor trafficking and function by reducing Ca2+/calmodulin-dependent protein kinase II synaptic distribution. J. Biol. Chem. 284, 10639–10649.10.1074/jbc.M806508200Search in Google Scholar

Gu, J., Shi, J., Wu, S., Jin, N., Qian, W., Zhou, J., Iqbal, I.G., Iqbal, K., Gong, C.X., and Liu, F. (2012). Cyclic AMP-dependent protein kinase regulates 9G8-mediated alternative splicing of tau exon 10. FEBS Lett. 586, 2239–2244.10.1016/j.febslet.2012.05.046Search in Google Scholar

Gui, J.F., Lane, W.S., and Fu, X.D. (1994). A serine kinase regulates intracellular localization of splicing factors in the cell cycle. Nature 369, 678–682.10.1038/369678a0Search in Google Scholar

Hanger, D.P., Hughes, K., Woodgett, J.R., Brion, J.P., and Anderton, B.H. (1992). Glycogen synthase kinase-3 induces Alzheimer’s disease-like phosphorylation of tau: generation of paired helical filament epitopes and neuronal localisation of the kinase. Neurosci. Lett. 147, 58–62.10.1016/0304-3940(92)90774-2Search in Google Scholar

Hartmann, A.M., Rujescu, D., Giannakouros, T., Nikolakaki, E., Goedert, M., Mandelkow, E.M., Gao, Q.S., Andreadis, A., and Stamm, S. (2001). Regulation of alternative splicing of human tau exon 10 by phosphorylation of splicing factors. Mol. Cell. Neurosci. 18, 80–90.10.1006/mcne.2001.1000Search in Google Scholar PubMed

Hensley, K., Carney, J.M., Mattson, M.P., Aksenova, M., Harris, M., Wu, J.F., Floyd, R.A., and Butterfield, D.A. (1994). A model for beta-amyloid aggregation and neurotoxicity based on free radical generation by the peptide: relevance to Alzheimer disease. Proc. Natl. Acad. Sci. USA 91, 3270–3274.10.1073/pnas.91.8.3270Search in Google Scholar PubMed PubMed Central

Hernandez, F., Perez, M., Lucas, J.J., Mata, A.M., Bhat, R., and Avila, J. (2004). Glycogen synthase kinase-3 plays a crucial role in tau exon 10 splicing and intranuclear distribution of SC35. Implications for Alzheimer’s disease. J. Biol. Chem. 279, 3801–3806.10.1074/jbc.M311512200Search in Google Scholar PubMed

Herrup, K. and Busser, J.C. (1995). The induction of multiple cell cycle events precedes target-related neuronal death. Development 121, 2385–2395.10.1242/dev.121.8.2385Search in Google Scholar PubMed

Hoglinger, G.U., Breunig, J.J., Depboylu, C., Rouaux, C., Michel, P.P., Alvarez-Fischer, D., Boutillier, A.L., Degregori, J., Oertel, W.H., Rakic, P., et al. (2007). The pRb/E2F cell-cycle pathway mediates cell death in Parkinson’s disease. Proc. Natl. Acad. Sci. USA 104, 3585–3590.10.1073/pnas.0611671104Search in Google Scholar PubMed PubMed Central

Hong, Y., Jang, S.W., and Ye, K. (2011). The N-terminal fragment from caspase-cleaved serine/arginine protein-specific kinase2 (SRPK2) translocates into the nucleus and promotes apoptosis. J. Biol. Chem. 286, 777–786.10.1074/jbc.M110.193441Search in Google Scholar PubMed PubMed Central

Hong, Y., Chan, C.B., Kwon, I.S., Li, X., Song, M., Lee, H.P., Liu, X., Sompol, P., Jin, P., Lee, H.G., et al. (2012). SRPK2 phosphorylates tau and mediates the cognitive defects in Alzheimer’s disease. J. Neurosci. 32, 17262–17272.10.1523/JNEUROSCI.3300-12.2012Search in Google Scholar PubMed PubMed Central

Hoover, B.R., Reed, M.N., Su, J., Penrod, R.D., Kotilinek, L.A., Grant, M.K., Pitstick, R., Carlson, G.A., Lanier, L.M., Yuan, L.L., et al. (2010). Tau mislocalization to dendritic spines mediates synaptic dysfunction independently of neurodegeneration. Neuron 68, 1067–1081.10.1016/j.neuron.2010.11.030Search in Google Scholar PubMed PubMed Central

Hsieh, H., Boehm, J., Sato, C., Iwatsubo, T., Tomita, T., Sisodia, S., and Malinow, R. (2006). AMPAR removal underlies Abeta-induced synaptic depression and dendritic spine loss. Neuron 52, 831–843.10.1016/j.neuron.2006.10.035Search in Google Scholar PubMed PubMed Central

Hutton, M., Lendon, C.L., Rizzu, P., Baker, M., Froelich, S., Houlden, H., Pickering-Brown, S., Chakraverty, S., Isaacs, A., Grover, A., et al. (1998). Association of missense and 5′-splice-site mutations in tau with the inherited dementia FTDP-17. Nature 393, 702–705.10.1038/31508Search in Google Scholar PubMed

Illenberger, S., Zheng-Fischhofer, Q., Preuss, U., Stamer, K., Baumann, K., Trinczek, B., Biernat, J., Godemann, R., Mandelkow, E.M., and Mandelkow, E. (1998). The endogenous and cell cycle-dependent phosphorylation of tau protein in living cells: implications for Alzheimer’s disease. Mol. Biol. Cell 9, 1495–1512.10.1091/mbc.9.6.1495Search in Google Scholar PubMed PubMed Central

Jang, S.W., Yang, S.J., Ehlen, A., Dong, S., Khoury, H., Chen, J., Persson, J.L., and Ye, K. (2008). Serine/arginine protein-specific kinase 2 promotes leukemia cell proliferation by phosphorylating acinus and regulating cyclin A1. Cancer Res. 68, 4559–4570.10.1158/0008-5472.CAN-08-0021Search in Google Scholar PubMed PubMed Central

Jang, S.W., Liu, X., Fu, H., Rees, H., Yepes, M., Levey, A., and Ye, K. (2009). Interaction of Akt-phosphorylated SRPK2 with 14-3-3 mediates cell cycle and cell death in neurons. J. Biol. Chem. 284, 24512–24525.10.1074/jbc.M109.026237Search in Google Scholar

Jankovic, J. (2008). Parkinson’s disease: clinical features and diagnosis. J. Neurol. Neurosurg. Psychiatry 79, 368–376.10.1136/jnnp.2007.131045Search in Google Scholar

Jordan-Sciutto, K.L., Dorsey, R., Chalovich, E.M., Hammond, R.R., and Achim, C.L. (2003). Expression patterns of retinoblastoma protein in Parkinson disease. J. Neuropathol. Exp. Neurol. 62, 68–74.10.1093/jnen/62.1.68Search in Google Scholar

Kalsotra, A. and Cooper, T.A. (2011). Functional consequences of developmentally regulated alternative splicing. Nat. Rev. Genet. 12, 715–729.10.1038/nrg3052Search in Google Scholar

Kamachi, M., Le, T.M., Kim, S.J., Geiger, M.E., Anderson, P., and Utz, P.J. (2002). Human autoimmune sera as molecular probes for the identification of an autoantigen kinase signaling pathway. J. Exp. Med. 196, 1213–1225.10.1084/jem.20021167Search in Google Scholar

Kar, A., Havlioglu, N., Tarn, W.Y., and Wu, J.Y. (2006). RBM4 interacts with an intronic element and stimulates tau exon 10 inclusion. J. Biol. Chem. 281, 24479–24488.10.1074/jbc.M603971200Search in Google Scholar

Kashani, A., Lepicard, E., Poirel, O., Videau, C., David, J.P., Fallet-Bianco, C., Simon, A., Delacourte, A., Giros, B., Epelbaum, J., et al. (2008). Loss of VGLUT1 and VGLUT2 in the prefrontal cortex is correlated with cognitive decline in Alzheimer disease. Neurobiol. Aging 29, 1619–1630.10.1016/j.neurobiolaging.2007.04.010Search in Google Scholar

Kim, I., Park, E.J., Seo, J., Ko, S.J., Lee, J., and Kim, C.H. (2011). Zinc stimulates tau S214 phosphorylation by the activation of Raf/mitogen-activated protein kinase-kinase/extracellular signal-regulated kinase pathway. NeuroReport 22, 839–844.10.1097/WNR.0b013e32834c0a2dSearch in Google Scholar

Kitamura, Y., Shimohama, S., Kamoshima, W., Ota, T., Matsuoka, Y., Nomura, Y., Smith, M.A., Perry, G., Whitehouse, P.J., and Taniguchi, T. (1998). Alteration of proteins regulating apoptosis, Bcl-2, Bcl-x, Bax, Bak, Bad, ICH-1 and CPP32, in Alzheimer’s disease. Brain Res. 780, 260–269.10.1016/S0006-8993(97)01202-XSearch in Google Scholar

Koizumi, J., Okamoto, Y., Onogi, H., Mayeda, A., Krainer, A.R., and Hagiwara, M. (1999). The subcellular localization of SF2/ASF is regulated by direct interaction with SR protein kinases (SRPKs). J. Biol. Chem. 274, 11125–11131.10.1074/jbc.274.16.11125Search in Google Scholar PubMed

Kornblihtt, A.R., Schor, I.E., Allo, M., Dujardin, G., Petrillo, E., and Munoz, M.J. (2013). Alternative splicing: a pivotal step between eukaryotic transcription and translation. Nat. Rev. Mol. Cell Biol. 14, 153–165.10.1038/nrm3525Search in Google Scholar

Kranenburg, O., van der Eb, A.J., and Zantema, A. (1996). Cyclin D1 is an essential mediator of apoptotic neuronal cell death. EMBO J. 15, 46–54.10.1002/j.1460-2075.1996.tb00332.xSearch in Google Scholar

Kruman, II, Wersto, R.P., Cardozo-Pelaez, F., Smilenov, L., Chan, S.L., Chrest, F.J., Emokpae, R. Jr., Gorospe, M., and Mattson, M.P. (2004). Cell cycle activation linked to neuronal cell death initiated by DNA damage. Neuron 41, 549–561.10.1016/S0896-6273(04)00017-0Search in Google Scholar

Ksiezak-Reding, H., Pyo, H.K., Feinstein, B., and Pasinetti, G.M. (2003). Akt/PKB kinase phosphorylates separately Thr212 and Ser214 of tau protein in vitro. Biochim. Biophys. Acta 1639, 159–168.10.1016/j.bbadis.2003.09.001Search in Google Scholar

Kuroyanagi, H., Kimura, T., Wada, K., Hisamoto, N., Matsumoto, K., and Hagiwara, M. (2000). SPK-1, a C. elegans SR protein kinase homologue, is essential for embryogenesis and required for germline development. Mech. Dev. 99, 51–64.10.1016/S0925-4773(00)00477-9Search in Google Scholar

Kurt, M.A., Davies, D.C., Kidd, M., Duff, K., Rolph, S.C., Jennings, K.H., and Howlett, D.R. (2001). Neurodegenerative changes associated with beta-amyloid deposition in the brains of mice carrying mutant amyloid precursor protein and mutant presenilin-1 transgenes. Exp. Neurol. 171, 59–71.10.1006/exnr.2001.7717Search in Google Scholar PubMed

Kyoung Pyo, H., Lovati, E., Pasinetti, G.M., and Ksiezak-Reding, H. (2004). Phosphorylation of tau at THR212 and SER214 in human neuronal and glial cultures: the role of AKT. Neuroscience 127, 649–658.10.1016/j.neuroscience.2004.05.036Search in Google Scholar PubMed

Lambrechts, D., Storkebaum, E., Morimoto, M., Del-Favero, J., Desmet, F., Marklund, S.L., Wyns, S., Thijs, V., Andersson, J., van Marion, I., et al. (2003). VEGF is a modifier of amyotrophic lateral sclerosis in mice and humans and protects motoneurons against ischemic death. Nat. Genet. 34, 383–394.10.1038/ng1211Search in Google Scholar PubMed

Lee, G., Cowan, N., and Kirschner, M. (1988). The primary structure and heterogeneity of tau protein from mouse brain. Science 239, 285–288.10.1126/science.3122323Search in Google Scholar PubMed

Lee, G., Newman, S.T., Gard, D.L., Band, H., and Panchamoorthy, G. (1998). Tau interacts with src-family non-receptor tyrosine kinases. J. Cell Sci. 111 (Pt 21), 3167–3177.10.1242/jcs.111.21.3167Search in Google Scholar PubMed

Leroy, A., Landrieu, I., Huvent, I., Legrand, D., Codeville, B., Wieruszeski, J.M., and Lippens, G. (2010). Spectroscopic studies of GSK3{beta} phosphorylation of the neuronal tau protein and its interaction with the N-terminal domain of apolipoprotein E. J. Biol. Chem. 285, 33435–33444.10.1074/jbc.M110.149419Search in Google Scholar

Lindwall, G. and Cole, R.D. (1984). Phosphorylation affects the ability of tau protein to promote microtubule assembly. J. Biol. Chem. 259, 5301–5305.10.1016/S0021-9258(17)42989-9Search in Google Scholar

Loh, B.J., Cullen, C.F., Vogt, N., and Ohkura, H. (2012). The conserved kinase SRPK regulates karyosome formation and spindle microtubule assembly in Drosophila oocytes. J. Cell Sci. 125, 4457–4462.10.1242/jcs.107979Search in Google Scholar PubMed PubMed Central

Loo, D.T., Copani, A., Pike, C.J., Whittemore, E.R., Walencewicz, A.J., and Cotman, C.W. (1993). Apoptosis is induced by beta-amyloid in cultured central nervous system neurons. Proc. Natl. Acad. Sci. USA 90, 7951–7955.10.1073/pnas.90.17.7951Search in Google Scholar PubMed PubMed Central

Ma, H.T. and Poon, R.Y. (2011). How protein kinases co-ordinate mitosis in animal cells. Biochem. J. 435, 17–31.10.1042/BJ20100284Search in Google Scholar PubMed

Manczak, M., Anekonda, T.S., Henson, E., Park, B.S., Quinn, J., and Reddy, P.H. (2006). Mitochondria are a direct site of A beta accumulation in Alzheimer’s disease neurons: implications for free radical generation and oxidative damage in disease progression. Hum. Mol. Genet. 15, 1437–1449.10.1093/hmg/ddl066Search in Google Scholar PubMed

Martin, L., Latypova, X., and Terro, F. (2011). Post-translational modifications of tau protein: implications for Alzheimer’s disease. Neurochem. Int. 58, 458–471.10.1016/j.neuint.2010.12.023Search in Google Scholar PubMed

Mathew, R., Hartmuth, K., Mohlmann, S., Urlaub, H., Ficner, R., and Luhrmann, R. (2008). Phosphorylation of human PRP28 by SRPK2 is required for integration of the U4/U6-U5 tri-snRNP into the spliceosome. Nat. Struct. Mol. Biol. 15, 435–443.10.1038/nsmb.1415Search in Google Scholar PubMed

Menalled, L.B. (2005). Knock-in mouse models of Huntington’s disease. NeuroRx 2, 465–470.10.1602/neurorx.2.3.465Search in Google Scholar PubMed PubMed Central

Mills, J.D. and Janitz, M. (2012). Alternative splicing of mRNA in the molecular pathology of neurodegenerative diseases. Neurobiol. Aging 33, 1012 e1011–1024.10.1016/j.neurobiolaging.2011.10.030Search in Google Scholar PubMed

Misteli, T., Caceres, J.F., and Spector, D.L. (1997). The dynamics of a pre-mRNA splicing factor in living cells. Nature 387, 523–527.10.1038/387523a0Search in Google Scholar

Momeni, P., Pittman, A., Lashley, T., Vandrovcova, J., Malzer, E., Luk, C., Hulette, C., Lees, A., Revesz, T., Hardy, J., et al. (2009). Clinical and pathological features of an Alzheimer’s disease patient with the MAPT Delta K280 mutation. Neurobiol. Aging 30, 388–393.10.1016/j.neurobiolaging.2007.07.013Search in Google Scholar

Mosch, B., Morawski, M., Mittag, A., Lenz, D., Tarnok, A., and Arendt, T. (2007). Aneuploidy and DNA replication in the normal human brain and Alzheimer’s disease. J. Neurosci. 27, 6859–6867.10.1523/JNEUROSCI.0379-07.2007Search in Google Scholar

Mullaart, E., Boerrigter, M.E., Ravid, R., Swaab, D.F., and Vijg, J. (1990). Increased levels of DNA breaks in cerebral cortex of Alzheimer’s disease patients. Neurobiol. Aging 11, 169–173.10.1016/0197-4580(90)90542-8Search in Google Scholar

Mylonis, I. and Giannakouros, T. (2003). Protein kinase CK2 phosphorylates and activates the SR protein-specific kinase 1. Biochem. Biophys. Res. Commun. 301, 650–656.10.1016/S0006-291X(02)03055-3Search in Google Scholar

Mytilinaios, D.G., Tsamis, K.I., Nikolakaki, E., and Giannakouros, T. (2012). Distribution of SRPK1 in human brain. J. Chem. Neuroanat. 43, 20–27.10.1016/j.jchemneu.2011.10.002Search in Google Scholar PubMed

Nagy, Z., Esiri, M.M., Cato, A.M., and Smith, A.D. (1997). Cell cycle markers in the hippocampus in Alzheimer’s disease. Acta Neuropathol. 94, 6–15.10.1007/s004010050665Search in Google Scholar PubMed

Nakagawa, O., Arnold, M., Nakagawa, M., Hamada, H., Shelton, J.M., Kusano, H., Harris, T.M., Childs, G., Campbell, K.P., Richardson, J.A., et al. (2005). Centronuclear myopathy in mice lacking a novel muscle-specific protein kinase transcriptionally regulated by MEF2. Genes Dev. 19, 2066–2077.10.1101/gad.1338705Search in Google Scholar PubMed PubMed Central

Ngo, J.C., Gullingsrud, J., Giang, K., Yeh, M.J., Fu, X.D., Adams, J.A., McCammon, J.A., and Ghosh, G. (2007). SR protein kinase 1 is resilient to inactivation. Structure 15, 123–133.10.1016/j.str.2006.11.011Search in Google Scholar PubMed

Niblock, M. and Gallo, J.M. (2012). Tau alternative splicing in familial and sporadic tauopathies. Biochem. Soc. Trans. 40, 677–680.10.1042/BST20120091Search in Google Scholar PubMed

Nikolakaki, E., Kohen, R., Hartmann, A.M., Stamm, S., Georgatsou, E., and Giannakouros, T. (2001). Cloning and characterization of an alternatively spliced form of SR protein kinase 1 that interacts specifically with scaffold attachment factor-B. J. Biol. Chem. 276, 40175–40182.10.1074/jbc.M104755200Search in Google Scholar

Nowak, D.G., Amin, E.M., Rennel, E.S., Hoareau-Aveilla, C., Gammons, M., Damodoran, G., Hagiwara, M., Harper, S.J., Woolard, J., Ladomery, M.R., et al. (2010). Regulation of vascular endothelial growth factor (VEGF) splicing from pro-angiogenic to anti-angiogenic isoforms: a novel therapeutic strategy for angiogenesis. J. Biol. Chem. 285, 5532–5540.10.1074/jbc.M109.074930Search in Google Scholar

Oddo, S., Caccamo, A., Shepherd, J.D., Murphy, M.P., Golde, T.E., Kayed, R., Metherate, R., Mattson, M.P., Akbari, Y., and LaFerla, F.M. (2003). Triple-transgenic model of Alzheimer’s disease with plaques and tangles: intracellular Abeta and synaptic dysfunction. Neuron 39, 409–421.10.1016/S0896-6273(03)00434-3Search in Google Scholar

Ogunshola, O.O., Antic, A., Donoghue, M.J., Fan, S.Y., Kim, H., Stewart, W.B., Madri, J.A., and Ment, L.R. (2002). Paracrine and autocrine functions of neuronal vascular endothelial growth factor (VEGF) in the central nervous system. J. Biol. Chem. 277, 11410–11415.10.1074/jbc.M111085200Search in Google Scholar

Park, D.S., Morris, E.J., Stefanis, L., Troy, C.M., Shelanski, M.L., Geller, H.M., and Greene, L.A. (1998). Multiple pathways of neuronal death induced by DNA-damaging agents, NGF deprivation, and oxidative stress. J. Neurosci. 18, 830–840.10.1523/JNEUROSCI.18-03-00830.1998Search in Google Scholar

Pei, J.J., An, W.L., Zhou, X.W., Nishimura, T., Norberg, J., Benedikz, E., Gotz, J., and Winblad, B. (2006). P70 S6 kinase mediates tau phosphorylation and synthesis. FEBS Lett. 580, 107–114.10.1016/j.febslet.2005.11.059Search in Google Scholar

Qian, W., Iqbal, K., Grundke-Iqbal, I., Gong, C.X., and Liu, F. (2011a). Splicing factor SC35 promotes tau expression through stabilization of its mRNA. FEBS Lett. 585, 875–880.10.1016/j.febslet.2011.02.017Search in Google Scholar

Qian, W., Liang, H., Shi, J., Jin, N., Grundke-Iqbal, I., Iqbal, K., Gong, C.X., and Liu, F. (2011b). Regulation of the alternative splicing of tau exon 10 by SC35 and Dyrk1A. Nucleic Acids Res. 39, 6161–6171.10.1093/nar/gkr195Search in Google Scholar

Ranganathan, S. and Bowser, R. (2003). Alterations in G(1) to S phase cell-cycle regulators during amyotrophic lateral sclerosis. Am. J. Pathol. 162, 823–835.10.1016/S0002-9440(10)63879-5Search in Google Scholar

Rhind, N. and Russell, P. (2012). Signaling pathways that regulate cell division. Cold Spring Harbor Perspect. Biol. 4, a005942.10.1101/cshperspect.a005942Search in Google Scholar PubMed PubMed Central

Risso, G., Pelisch, F., Quaglino, A., Pozzi, B., and Srebrow, A. (2012). Regulating the regulators: serine/arginine-rich proteins under scrutiny. IUBMB Life 64, 809–816.10.1002/iub.1075Search in Google Scholar PubMed

Robertson, J., Loviny, T.L., Goedert, M., Jakes, R., Murray, K.J., Anderton, B.H., and Hanger, D.P. (1993). Phosphorylation of tau by cyclic-AMP-dependent protein kinase. Dementia 4, 256–263.Search in Google Scholar

Ryoo, S.R., Jeong, H.K., Radnaabazar, C., Yoo, J.J., Cho, H.J., Lee, H.W., Kim, I.S., Cheon, Y.H., Ahn, Y.S., Chung, S.H., et al. (2007). DYRK1A-mediated hyperphosphorylation of Tau. A functional link between Down syndrome and Alzheimer disease. J. Biol. Chem. 282, 34850–34857.10.1074/jbc.M707358200Search in Google Scholar PubMed

Samsonov, A., Yu, J.Z., Rasenick, M., and Popov, S.V. (2004). Tau interaction with microtubules in vivo. J. Cell Sci. 117, 6129–6141.10.1242/jcs.01531Search in Google Scholar PubMed

Sato, S., Cerny, R.L., Buescher, J.L., and Ikezu, T. (2006). Tau-tubulin kinase 1 (TTBK1), a neuron-specific tau kinase candidate, is involved in tau phosphorylation and aggregation. J. Neurochem. 98, 1573–1584.10.1111/j.1471-4159.2006.04059.xSearch in Google Scholar PubMed

Scheff, S.W., Price, D.A., Schmitt, F.A., and Mufson, E.J. (2006). Hippocampal synaptic loss in early Alzheimer’s disease and mild cognitive impairment. Neurobiol. Aging 27, 1372–1384.10.1016/j.neurobiolaging.2005.09.012Search in Google Scholar PubMed

Scheff, S.W., Price, D.A., Schmitt, F.A., DeKosky, S.T., and Mufson, E.J. (2007). Synaptic alterations in CA1 in mild Alzheimer disease and mild cognitive impairment. Neurology 68, 1501–1508.10.1212/01.wnl.0000260698.46517.8fSearch in Google Scholar PubMed

Schmetsdorf, S., Gartner, U., and Arendt, T. (2007). Constitutive expression of functionally active cyclin-dependent kinases and their binding partners suggests noncanonical functions of cell cycle regulators in differentiated neurons. Cereb. Cortex 17, 1821–1829.10.1093/cercor/bhl091Search in Google Scholar PubMed

Schwartz, G.K. and Shah, M.A. (2005). Targeting the cell cycle: a new approach to cancer therapy. J. Clin. Oncol. 23, 9408–9421.10.1200/JCO.2005.01.5594Search in Google Scholar PubMed

Schwerk, C., Prasad, J., Degenhardt, K., Erdjument-Bromage, H., White, E., Tempst, P., Kidd, V.J., Manley, J.L., Lahti, J.M., and Reinberg, D. (2003). ASAP, a novel protein complex involved in RNA processing and apoptosis. Mol. Cell. Biol. 23, 2981–2990.10.1128/MCB.23.8.2981-2990.2003Search in Google Scholar PubMed PubMed Central

Seward, M.E., Swanson, E., Norambuena, A., Reimann, A., Cochran, J.N., Li, R., Roberson, E.D., and Bloom, G.S. (2013). Amyloid-beta signals through tau to drive ectopic neuronal cell cycle re-entry in Alzheimer’s disease. J. Cell Sci. 126, 1278–1286.10.1242/jcs.1125880Search in Google Scholar PubMed PubMed Central

Shi, J., Qian, W., Yin, X., Iqbal, K., Grundke-Iqbal, I., Gu, X., Ding, F., Gong, C.X., and Liu, F. (2011). Cyclic AMP-dependent protein kinase regulates the alternative splicing of tau exon 10: a mechanism involved in tau pathology of Alzheimer disease. J. Biol. Chem. 286, 14639–14648.10.1074/jbc.M110.204453Search in Google Scholar

Shieh, S.Y., Ikeda, M., Taya, Y., and Prives, C. (1997). DNA damage-induced phosphorylation of p53 alleviates inhibition by MDM2. Cell 91, 325–334.10.1016/S0092-8674(00)80416-XSearch in Google Scholar

Shimohama, S., Tanino, H., and Fujimoto, S. (1999). Changes in caspase expression in Alzheimer’s disease: comparison with development and aging. Biochem. Biophys. Res. Commun. 256, 381–384.10.1006/bbrc.1999.0344Search in Google Scholar PubMed

Shultz, J.C., Goehe, R.W., Wijesinghe, D.S., Murudkar, C., Hawkins, A.J., Shay, J.W., Minna, J.D., and Chalfant, C.E. (2010). Alternative splicing of caspase 9 is modulated by the phosphoinositide 3-kinase/Akt pathway via phosphorylation of SRp30a. Cancer Res. 70, 9185–9196.10.1158/0008-5472.CAN-10-1545Search in Google Scholar PubMed PubMed Central

Siebel, C.W., Feng, L., Guthrie, C., and Fu, X.D. (1999). Conservation in budding yeast of a kinase specific for SR splicing factors. Proc. Natl. Acad. Sci. USA 96, 5440–5445.10.1073/pnas.96.10.5440Search in Google Scholar PubMed PubMed Central

Smith, D.L., Pozueta, J., Gong, B., Arancio, O., and Shelanski, M. (2009). Reversal of long-term dendritic spine alterations in Alzheimer disease models. Proc. Natl. Acad. Sci. USA 106, 16877–16882.10.1073/pnas.0908706106Search in Google Scholar PubMed PubMed Central

Steiner, B., Mandelkow, E.M., Biernat, J., Gustke, N., Meyer, H.E., Schmidt, B., Mieskes, G., Soling, H.D., Drechsel, D., Kirschner, M.W., et al. (1990). Phosphorylation of microtubule-associated protein tau: identification of the site for Ca2(+)-calmodulin dependent kinase and relationship with tau phosphorylation in Alzheimer tangles. EMBO J. 9, 3539–3544.10.1002/j.1460-2075.1990.tb07563.xSearch in Google Scholar PubMed PubMed Central

Sturrock, A. and Leavitt, B.R. (2010). The clinical and genetic features of Huntington disease. J. Geriatr. Psychiatry Neurol. 23, 243–259.10.1177/0891988710383573Search in Google Scholar PubMed

Sumrejkanchanakij, P., Tamamori-Adachi, M., Matsunaga, Y., Eto, K., and Ikeda, M.A. (2003). Role of cyclin D1 cytoplasmic sequestration in the survival of postmitotic neurons. Oncogene 22, 8723–8730.10.1038/sj.onc.1206870Search in Google Scholar PubMed

Svensson, B., Peters, M., Konig, H.G., Poppe, M., Levkau, B., Rothermundt, M., Arolt, V., Kogel, D., and Prehn, J.H. (2002). Vascular endothelial growth factor protects cultured rat hippocampal neurons against hypoxic injury via an antiexcitotoxic, caspase-independent mechanism. J. Cereb. Blood Flow Metab. 22, 1170–1175.10.1097/01.wcb.0000037988.07114.98Search in Google Scholar PubMed

Szekelyhidi, Z., Pato, J., Waczek, F., Banhegyi, P., Hegymegi-Barakonyi, B., Eros, D., Meszaros, G., Hollosy, F., Hafenbradl, D., Obert, S., et al. (2005). Synthesis of selective SRPK-1 inhibitors: novel tricyclic quinoxaline derivatives. Bioorg. Med. Chem. Lett. 15, 3241–3246.10.1016/j.bmcl.2005.04.064Search in Google Scholar

Tang, Z., Yanagida, M., and Lin, R.J. (1998). Fission yeast mitotic regulator Dsk1 is an SR protein-specific kinase. J. Biol. Chem. 273, 5963–5969.10.1074/jbc.273.10.5963Search in Google Scholar

Tsianou, D., Nikolakaki, E., Tzitzira, A., Bonanou, S., Giannakouros, T., and Georgatsou, E. (2009). The enzymatic activity of SR protein kinases 1 and 1a is negatively affected by interaction with scaffold attachment factors B1 and 2. FEBS J. 276, 5212–5227.10.1111/j.1742-4658.2009.07217.xSearch in Google Scholar

Ueberham, U., Hessel, A., and Arendt, T. (2003). Cyclin C expression is involved in the pathogenesis of Alzheimer’s disease. Neurobiol. Aging 24, 427–435.10.1016/S0197-4580(02)00132-XSearch in Google Scholar

Uetsuki, T., Takemoto, K., Nishimura, I., Okamoto, M., Niinobe, M., Momoi, T., Miura, M., and Yoshikawa, K. (1999). Activation of neuronal caspase-3 by intracellular accumulation of wild-type Alzheimer amyloid precursor protein. J. Neurosci. 19, 6955–6964.10.1523/JNEUROSCI.19-16-06955.1999Search in Google Scholar

van der Putten, H., Wiederhold, K.H., Probst, A., Barbieri, S., Mistl, C., Danner, S., Kauffmann, S., Hofele, K., Spooren, W.P., Ruegg, M.A., et al. (2000). Neuropathology in mice expressing human alpha-synuclein. J. Neurosci. 20, 6021–6029.10.1523/JNEUROSCI.20-16-06021.2000Search in Google Scholar

Varvel, N.H., Bhaskar, K., Patil, A.R., Pimplikar, S.W., Herrup, K., and Lamb, B.T. (2008). Abeta oligomers induce neuronal cell cycle events in Alzheimer’s disease. J. Neurosci. 28, 10786–10793.10.1523/JNEUROSCI.2441-08.2008Search in Google Scholar PubMed PubMed Central

Vincent, I., Jicha, G., Rosado, M., and Dickson, D.W. (1997). Aberrant expression of mitotic cdc2/cyclin B1 kinase in degenerating neurons of Alzheimer’s disease brain. J. Neurosci. 17, 3588–3598.10.1523/JNEUROSCI.17-10-03588.1997Search in Google Scholar

Virdee, K., Yoshida, H., Peak-Chew, S., and Goedert, M. (2007). Phosphorylation of human microtubule-associated protein tau by protein kinases of the AGC subfamily. FEBS Lett. 581, 2657–2662.10.1016/j.febslet.2007.05.009Search in Google Scholar PubMed

Vivarelli, S., Lenzken, S.C., Ruepp, M.D., Ranzini, F., Maffioletti, A., Alvarez, R., Muhlemann, O., and Barabino, S.M. (2013). Paraquat modulates alternative pre-mRNA splicing by modifying the intracellular distribution of SRPK2. PLoS One 8, e61980.10.1371/journal.pone.0061980Search in Google Scholar PubMed PubMed Central

Wang, H.Y., Lin, W., Dyck, J.A., Yeakley, J.M., Songyang, Z., Cantley, L.C., and Fu, X.D. (1998). SRPK2: a differentially expressed SR protein-specific kinase involved in mediating the interaction and localization of pre-mRNA splicing factors in mammalian cells. J. Cell Biol. 140, 737–750.10.1083/jcb.140.4.737Search in Google Scholar PubMed PubMed Central

Wang, J., Gao, Q.S., Wang, Y., Lafyatis, R., Stamm, S., and Andreadis, A. (2004). Tau exon 10, whose missplicing causes frontotemporal dementia, is regulated by an intricate interplay of cis elements and trans factors. J. Neurochem. 88, 1078–1090.10.1046/j.1471-4159.2003.02232.xSearch in Google Scholar PubMed

Wang, Y., Gao, L., Tse, S.W., and Andreadis, A. (2010). Heterogeneous nuclear ribonucleoprotein E3 modestly activates splicing of tau exon 10 via its proximal downstream intron, a hotspot for frontotemporal dementia mutations. Gene 451, 23–31.10.1016/j.gene.2009.11.006Search in Google Scholar PubMed PubMed Central

Wang, P., Xie, Z.H., Guo, Y.J., Zhao, C.P., Jiang, H., Song, Y., Zhu, Z.Y., Lai, C., Xu, S.L., and Bi, J.Z. (2011a). VEGF-induced angiogenesis ameliorates the memory impairment in APP transgenic mouse model of Alzheimer’s disease. Biochem. Biophys. Res. Commun. 411, 620–626.10.1016/j.bbrc.2011.07.003Search in Google Scholar PubMed

Wang, Y., Wang, J., Gao, L., Stamm, S., and Andreadis, A. (2011b). An SRp75/hnRNPG complex interacting with hnRNPE2 regulates the 5′ splice site of tau exon 10, whose misregulation causes frontotemporal dementia. Gene 485, 130–138.10.1016/j.gene.2011.06.020Search in Google Scholar PubMed PubMed Central

Wei, Z., Song, M.S., MacTavish, D., Jhamandas, J.H., and Kar, S. (2008). Role of calpain and caspase in beta-amyloid-induced cell death in rat primary septal cultured neurons. Neuropharmacology 54, 721–733.10.1016/j.neuropharm.2007.12.006Search in Google Scholar PubMed

Yap, K. and Makeyev, E.V. (2013). Regulation of gene expression in mammalian nervous system through alternative pre-mRNA splicing coupled with RNA quality control mechanisms. Mol. Cell. Neurosci. in press.10.1016/j.mcn.2013.01.003Search in Google Scholar PubMed

Yin, X., Jin, N., Gu, J., Shi, J., Zhou, J., Gong, C.X., Iqbal, K., Grundke-Iqbal, I., and Liu, F. (2012). Dual-specificity tyrosine phosphorylation-regulated kinase 1A (Dyrk1A) modulates serine/arginine-rich protein 55 (SRp55)-promoted Tau exon 10 inclusion. J. Biol. Chem. 287, 30497–30506.10.1074/jbc.M112.355412Search in Google Scholar PubMed PubMed Central

Yoshida, H. and Goedert, M. (2006). Sequential phosphorylation of tau protein by cAMP-dependent protein kinase and SAPK4/p38delta or JNK2 in the presence of heparin generates the AT100 epitope. J. Neurochem. 99, 154–164.10.1111/j.1471-4159.2006.04052.xSearch in Google Scholar PubMed

Yoshida, H., Hastie, C.J., McLauchlan, H., Cohen, P., and Goedert, M. (2004). Phosphorylation of microtubule-associated protein tau by isoforms of c-Jun N-terminal kinase (JNK). J. Neurochem. 90, 352–358.10.1111/j.1471-4159.2004.02479.xSearch in Google Scholar PubMed

Yuan, A., Kumar, A., Peterhoff, C., Duff, K., and Nixon, R.A. (2008). Axonal transport rates in vivo are unaffected by tau deletion or overexpression in mice. J. Neurosci. 28, 1682–1687.10.1523/JNEUROSCI.5242-07.2008Search in Google Scholar PubMed PubMed Central

Zhong, X.Y., Ding, J.H., Adams, J.A., Ghosh, G., and Fu, X.D. (2009). Regulation of SR protein phosphorylation and alternative splicing by modulating kinetic interactions of SRPK1 with molecular chaperones. Genes Dev. 23, 482–495.10.1101/gad.1752109Search in Google Scholar PubMed PubMed Central

Zhou, Z., Qiu, J., Liu, W., Zhou, Y., Plocinik, R.M., Li, H., Hu, Q., Ghosh, G., Adams, J.A., Rosenfeld, M.G., et al. (2012). The Akt-SRPK-SR axis constitutes a major pathway in transducing EGF signaling to regulate alternative splicing in the nucleus. Mol. Cell 47, 422–433.10.1016/j.molcel.2012.05.014Search in Google Scholar PubMed PubMed Central

Received: 2013-5-6
Accepted: 2013-6-5
Published Online: 2013-07-06
Published in Print: 2013-08-01

©2013 by Walter de Gruyter Berlin Boston

Downloaded on 21.5.2024 from https://www.degruyter.com/document/doi/10.1515/revneuro-2013-0014/html
Scroll to top button