Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter (O) July 8, 2019

Metal organic framework (La-PDA) as an effective adsorbent for the removal of uranium(VI) from aqueous solution

  • Kun Tian , Shuting Zhuang , Jinling Wu and Jianlong Wang EMAIL logo
From the journal Radiochimica Acta

Abstract

A two-dimensional lanthanum(III) porous coordination polymer was prepared, characterized and applied as an efficient adsorbent for the removal of uranium from aqueous solution. Lanthanum(III) was the metal center of MOFs, and the deprotonated anions of pyridine-2,6-dicarboxylic acid (H2PDA), PDA2− was the organic ligand, this MOF was name as La-PDA, which was synthesized by hydrothermal reaction method. Scanning electron microscope (SEM), Fourier transform infrared (FTIR), powder X-ray diffraction (PXRD) and thermal gravimetric (TG) analysis were used for characterization, and the results indicated that the La-PDA composites were successfully prepared. Compared with traditional adsorbents of uranium, La-PDA showed excellent adsorption properties. The adsorption capacity was 247.6 mg g−1 at 298 K and pH 4.0. The adsorption equilibrium achieved within 120 min, and the adsorption process was exothermic and spontaneous. The absorption mechanism of La-PDA was also explored, from the XPS spectra, the pyridine-like nitrogen atoms (C=N–C) and carboxyl oxygen atoms (–COO–) contributed to the adsorption of uranium. The results suggested that PDA2− was a potential ligand of uranium adsorption, La-PDA composites were effective adsorbents for the removal of uranium from aqueous solution.


Corresponding author: Prof. Jianlong Wang, Collaborative Innovation Center for Advanced Nuclear Energy Technology, INET, Tsinghua University, Energy Science Building, Beijing 100084, P.R. China; and Beijing Key Laboratory of Radioactive Waste Treatment, Tsinghua University, Beijing 100084, P.R. China, Tel.: +86 10 62784843, Fax: +86 10 62771150

Award Identifier / Grant number: 2016YFC1402507

Award Identifier / Grant number: 51578307

Award Identifier / Grant number: IRT-13026

Funding statement: The research was supported by the National Key Research and Development Program (2016YFC1402507), the National Natural Science Foundation of China (51578307), and the Program for Changjiang Scholars and Innovative Research Team in University (IRT-13026).

List of abbreviations

AO

amidoxime

b

the Langmuir constant (L mg−1)

c0

the initial concentration of uranium (mg L−1)

ce

the equilibrium concentration of uranium (mg L−1)

ct

the concentration of uranium at time t (mg L−1)

EDS

energy dispersive spectrometer

FTIR

Fourier transform infrared

ΔG0

the Gibbs free energy changes (kJ mol−1)

ΔH0

the standard enthalpy changes (kJ mol−1)

HKUST-1

Cu-BTC (BTC=pyridine-2,6-dicarboxylate)

H2BDC

benzene-1,4-dicarboxylic acid

H3BTC

benzene-1,3,5-tricarboxylic acid

H2PDA

pyridine-2,6-dicarboxylic acid

Kd

the distribution coefficient (mL g−1)

Kf

Freundlich constant [(mg g−1) (L mg−1)1/n]

k1

the pseudo-first-order rate constant (min−1)

k2

the pseudo-second-order rate constant (g mg−1 min−1)

La-PDA

{[La4(PDA)10(H2O)8]·2H2O}n (PDA=pyridine-2,6-dicarboxylate)

MIL-101(Cr)

Cr-BDC (BDC=benzene-1,4-dicarboxylate)

MIL-53

M(OH)(O2C-C6H4-CO2) (M=Al, Cr)

MOFs

metal–organic frameworks

MOF-76

Tb-BTC (BTC=pyridine-2,6-dicarboxylate)

m

the weight of the adsorbents (mg)

n

Freundlich exponent (dimensionless)

PTFE

polytetrafluoroethylene

PXRD

powder X-ray diffraction

qe

the equilibrium adsorption capacity (mg g−1)

qt

the adsorption capacity at time t (mg g−1)

qm

the capacity of Langmuir adsorption (mg g−1)

R

the ideal gas constant (8.314 J mol−1 K−1)

r2

the corresponding correlation

SEM

scanning electron microscope

ΔS0

the standard entropy changes (J mol−1 K−1)

T

the thermodynamic temperature (K)

TG

thermal gravimetric analysis

UiO-66

Zr-BDC (BDC=benzene-1,4-dicarboxylate)

UiO-68

Zr-TPDC (TPDC=terphenyl-4,4′-dicarboxylate)

V

the volume of the solution (mL)

XPS

X-ray photoelectron spectroscopy

Zn-MOF-74

Zn-DOBDC (DOBDC=2,5-dioxidobenzene-1,4-dicarboxylate)

References

1. Bjorklund, G., Christophersen, O. A., Chirumbolo, S., Selinus, O., Aaseth, J.: Recent aspects of uranium toxicology in medical geology. Environ. Res. 156, 526 (2017).10.1016/j.envres.2017.04.010Search in Google Scholar PubMed

2. Wang, J. L., Chen, C.: Biosorbents for heavy metals removal and their future. Biotechnol. Adv. 27, 195 (2009).10.1016/j.biotechadv.2008.11.002Search in Google Scholar PubMed

3. Zhuang, S. T., Cheng, R., Kang, M., Wang, J. L.: Kinetic and equilibrium of U(VI) adsorption onto magnetic amidoxime-functionalized chitosan beads. J. Clean. Prod. 188, 655 (2018).10.1016/j.jclepro.2018.04.047Search in Google Scholar

4. Wu, J. L., Tian, K., Wang, J. L.: Adsorption of uranium (VI) by amidoxime modified multiwalled carbon nanotubes. Prog. Nucl. Energ. 106, 79 (2018).10.1016/j.pnucene.2018.02.020Search in Google Scholar

5. Zhuang, S. T., Wang, J. L.: Removal of U(VI) from aqueous solution using phosphate functionalized bacterial cellulose as efficient adsorbent. Radiochim. Acta 107, 459 (2019).10.1515/ract-2018-3077Search in Google Scholar

6. Wang, J. L., Zhuang, S. T.: Removal of cesium ions from aqueous solutions using various separation technologies. Rev. Environ. Sci. Biotechnol. 18, 231 (2019).10.1007/s11157-019-09499-9Search in Google Scholar

7. Liu, W., Dai, X., Bai, Z., Wang, Y., Yang, Z., Zhang, L., Xu, L., Chen, L., Li, Y., Gui, D., Juan, D., Wang, J., Zhou, R., Chai, Z., Wang, S.: Highly sensitive and selective uranium detection in natural water systems using a luminescent mesoporous metal-organic framework equipped with abundant Lewis basic sites: a combined batch, X-ray absorption spectroscopy, and first principles simulation investigation. Environ. Sci. Technol. 51, 3911 (2017).10.1021/acs.est.6b06305Search in Google Scholar PubMed

8. Chen, L., Bai, Z., Zhu, L., Zhang, L., Cai, Y., Li, Y., Liu, W., Wang, Y., Chen, L., Diwu, J., Wang, J., Chai, Z., Wang, S.: Ultrafast and efficient extraction of uranium from seawater using an amidoxime appended metal-organic framework. ACS Appl. Mater. Interfaces 9, 32446 (2017).10.1021/acsami.7b12396Search in Google Scholar PubMed

9. Wang, J. L., Chen, C.: Chitosan-based biosorbents: modification and application for biosorption of heavy metals and radionuclides. Bioresour. Technol. 160, 129 (2014).10.1016/j.biortech.2013.12.110Search in Google Scholar PubMed

10. Tian, K., Wu, J. L., Wang, J. L.: Adsorptive extraction of uranium (VI) from seawater using dihydroimidazole functionalized multiwalled carbon nanotubes. Radiochim. Acta 106, 719 (2018).10.1515/ract-2017-2913Search in Google Scholar

11. Khan, N. A., Hasan, Z., Jhung, S. H.: Adsorptive removal of hazardous materials using metal-organic frameworks (MOFs): a review. J. Hazard. Mater. 244, 444 (2013).10.1016/j.jhazmat.2012.11.011Search in Google Scholar PubMed

12. Wang, J. L., Zhuang, S. T., Liu, Y.: Metal hexacyanoferrates-based adsorbents for cesium removal. Coord. Chem. Rev. 374, 430 (2018).10.1016/j.ccr.2018.07.014Search in Google Scholar

13. Luo, S., Wang, J. L.: MOF/graphene oxide composite as an efficient adsorbent for the removal of organic dyes from aqueous solution. Environ. Sci. Pollut. Res. 25, 5521 (2018).10.1007/s11356-017-0932-zSearch in Google Scholar PubMed

14. Bai, Z. Q., Yuan, L. Y., Zhu, L., Liu, Z. R., Chu, S. Q., Zheng, L. R., Zhang, J., Chai, Z. F., Shi, W. Q.: Introduction of amino groups into acid-resistant MOFs for enhanced U(VI) sorption. J. Mater. Chem. A 3, 525 (2015).10.1039/C4TA04878DSearch in Google Scholar

15. Li, L. N., Ma, W., Shen, S. S., Huang, H. X., Bai, Y., Liu, H. W.: A combined experimental and theoretical study on the extraction of uranium by amino-derived metal organic frameworks through post-synthetic strategy. ACS Appl. Mater. Interfaces 8, 31032 (2016).10.1021/acsami.6b11332Search in Google Scholar PubMed

16. De Decker, J., Rochette, J., De Clercq, J., Florek, J., Van Der Voort, P.: Carbamoylmethylphosphine oxide-functionalized MIL-101(Cr) as highly selective uranium adsorbent. Anal. Chem. 89, 5679 (2017).10.1021/acs.analchem.7b00821Search in Google Scholar PubMed

17. Alqadami, A. A., Naushad, M., Alothman, Z. A., Ghfar, A. A.: Novel metal-organic framework (MOF) based composite material for the sequestration of U(VI) and Th(IV) metal Ions from aqueous environment. ACS Appl. Mater. Interfaces 9, 36026 (2017).10.1021/acsami.7b10768Search in Google Scholar PubMed

18. Liu, J. M., Liu, T., Wang, C. C., Yin, X. H., Xiong, Z. H.: Introduction of amidoxime groups into metal-organic frameworks to synthesize MIL-53(Al)-AO for enhanced U(VI) sorption. J. Mol. Liq. 242, 531 (2017).10.1016/j.molliq.2017.07.024Search in Google Scholar

19. Feng, Y. F., Jiang, H., Li, S. N., Wang, J., Jing, X. Y., Wang, Y. R., Chen, M.: Metal-organic frameworks HKUST-1 for liquid-phase adsorption of uranium. Colloids Surf. A: Physicochem. Eng. Asp. 431, 87 (2013).10.1016/j.colsurfa.2013.04.032Search in Google Scholar

20. Zhang, H., Xue, J., Hu, N., Sun, J., Ding, D., Wang, Y., Li L.: Selective removal of U(VI) from low concentration wastewater by functionalized HKUST-1@H3PW12O40. J. Radional. Nucl. Chem. 308, 865 (2016).10.1007/s10967-015-4603-6Search in Google Scholar

21. Carboni, M., Abney, C. W., Liu, S. B., Lin, W. B.: Highly porous and stable metal-organic frameworks for uranium extraction. Chem. Sci. 4, 2396 (2013).10.1039/c3sc50230aSearch in Google Scholar

22. Luo, B. C., Yuan, L. Y., Chai, Z. F., Shi, W. Q., Tang, Q.: U(VI) capture from aqueous solution by highly porous and stable MOFs: UiO-66 and its amine derivative. J. Radional. Nucl. Chem. 307, 269 (2016).10.1007/s10967-015-4108-3Search in Google Scholar

23. Yang, W. T., Bai, Z. Q., Shi, W. Q., Yuan, L. Y., Tian, T., Chai, Z. F., Wang, H., Sun, Z. M.: MOF-76: from a luminescent probe to highly efficient U-VI sorption material. Chem. Commun. 49, 10415 (2013).10.1039/C3CC44983ASearch in Google Scholar

24. Zhang, L., Wang, L. L., Gong, L. L., Feng, X. F., Luo, M. B., Luo, F.: Coumarin-modified microporous-mesoporous Zn-MOF-74 showing ultra-high uptake capacity and photo-switched storage/release of U-VI ions. J. Hazard. Mater. 311, 30 (2016).10.1016/j.jhazmat.2016.01.082Search in Google Scholar PubMed

25. Zhu, L., Sheng, D., Xu, C., Dai, X., Silver, M. A., Li, J., Li, P., Wang, Y., Wang, Y., Chen, L., Xiao, C., Chen, J., Zhou, R., Zhang, C., Farha, O. K., Chai, Z., Albrecht-Schmitt, T. E., Wang, S.: Identifying the recognition site for selective trapping of 99TcO4 in a hydrolytically stable and radiation resistant cationic metal-organic framework. J. Am. Chem. Soc. 139, 14873 (2017).10.1021/jacs.7b08632Search in Google Scholar PubMed

26. Ozay, O., Ekici, S., Aktas, N., Sahiner, N.: P(4-vinyl pyridine) hydrogel use for the removal of UO22+ and Th4+ from aqueous environments. J. Environ. Manage. 92, 3121 (2011).10.1016/j.jenvman.2011.08.004Search in Google Scholar PubMed

27. Yang, L. R., Song, S., Shao, C. Y., Zhang, W., Zhang, H. M., Bu, Z. W., Ren, T. G.: Synthesis, structure and luminescent properties of two-dimensional lanthanum(III) porous coordination polymer based on pyridine-2,6-dicarboxylic acid. Synth. Met. 161, 925 (2011).10.1016/j.synthmet.2011.02.020Search in Google Scholar

28. Zhuang, S. T., Yin, Y. N., Wang, J. L.: Removal of cobalt ions from aqueous solution using chitosan grafted with maleic acid by gamma radiation. Nucl. Eng. Technol. 50, 211 (2018).10.1016/j.net.2017.11.007Search in Google Scholar

29. Li, W. C., Victor, D. M., Chakrabarti, C. L.: Effect of pH and uranium concentration on interaction of uranium(VI) and uranium(IV) with organic ligands in aqueous solutions. Anal. Chem. 52, 155 (1980).10.1021/ac50053a033Search in Google Scholar

30. Guo, X., Wang, J. L.: The phenomenological mass transfer kinetics model for Sr2+ sorption onto spheroids primary microplastics. Environ. Pollut. 250, 737 (2019).10.1016/j.envpol.2019.04.091Search in Google Scholar PubMed

31. Guo, X., Wang, J. L.: A general kinetic model for adsorption: theoretical analysis and modeling. J. Mol. Liq. 288 111100 (2019).10.1016/j.molliq.2019.111100Search in Google Scholar

32. Wang, L. L., Luo, F., Dang, L. L., Li, J. Q., Wu, X. L., Liu, S. J., Luo, M. B.: Ultrafast high-performance extraction of uranium from seawater without pretreatment using an acylamide- and carboxyl-functionalized metal-organic framework. J. Mater. Chem. A 3, 13724 (2015).10.1039/C5TA01972ASearch in Google Scholar

33. Zheng, T., Yang, Z. X., Gui, D. X., Liu, Z. Y., Wang, X. X., Dai, X., Liu, S. T., Zhang, L. J., Gao, Y., Chen, L. H., Sheng, D. P., Wang, Y. L., Juan, D. W., Wang, J. Q., Zhou, R. H., Chai, Z. F., Albrecht-Schmitt, T. E., Wang, S. A.: Overcoming the crystallization and designability issues in the ultrastable zirconium phosphonate framework system. Nat. Comm. 8, 15369 (2017).10.1038/ncomms15369Search in Google Scholar PubMed PubMed Central

Received: 2019-03-25
Accepted: 2019-06-11
Published Online: 2019-07-08
Published in Print: 2020-03-26

© 2020 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 6.5.2024 from https://www.degruyter.com/document/doi/10.1515/ract-2019-3145/html
Scroll to top button