Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter (O) February 11, 2017

Complexation of vanadium with amidoxime and carboxyl groups: uncovering the competitive role of vanadium in uranium extraction from seawater

  • Cong-Zhi Wang , Qun-Yan Wu , Jian-Hui Lan , Zhi-Fang Chai , Guo-Zhong Wu and Wei-Qun Shi EMAIL logo
From the journal Radiochimica Acta

Abstract

At present, amidoxime-based adsorbents are considered to be the most promising materials for extraction of uranium from seawater. However, the high concentrations of transition metals especially vanadium strongly compete with uranium in the sequestration process, which is extremely limited the commercial use of amidoxime-based adsorbents. In this work, the coordination modes, bonding nature, and stabilities of possible vanadium(IV) (VO2+) and (V) (VO2+, VO3+, V5+) complexes with amidoximate (AO), carboxyl (Ac), glutarimidedioximate (HA) and deprotonated glutarimidedioximate (A2−) on single and double alkyl chains (R=C13H26) are systematically explored by quantum chemical calculations. Different from the uranyl (UO22+) complexes, the AO groups of the vanadium(IV) and (V) complexes prefer to coordinate as monodentate and chelate ligands, while few species with AO groups in η2-binding mode have been observed in the vanadium complexes. Besides, the vanadium complexes are predicted to have obvious covalent metal-ligand bonds. According to thermodynamic stability analysis, all the vanadium complexes with AO, Ac, HA and A2− ligands on double alkyl chains are found to be more stable than corresponding complexes with ligands on a single chain. The synergistic effect of the amidoxime and carboxyl groups can be observed in most of VO2+ and VO3+ complexes with mixed ligands (AO/Ac). The vanadium(IV) and (V) complexes are more stable than the corresponding uranyl complexes, and the adsorption capability of the amidoxime-based adsorbents toward vanadium(V) ions decrease in the order of VO2+>VO3+> V5+. The dioxovanadium cation VO2+ is predicted to form multinuclear vanadium complex in the sequestration process, possibly resulting in higher stable VO2+ complexes. Therefore, the higher complexation ability of the amidoxime-based adsorbents toward vanadium over uranium is probably due to the differences in the coordination modes and bonding nature. The current results might provide important clues for rational design of efficient ligands in sequestration of uranium from seawater.

Acknowledgments

This work was supported by the National Natural Science Foundation of China (Grant No. 11575212, 21577144). Research Fund Program of Guangdong Provincial Key Laboratory of Radionuclides Pollution Control and Resources. The results described in this work were obtained on the ScGrid of Supercomputing Center, Computer Network Information Center of Chinese Academy of Sciences.

References

1. Kim, J., Tsouris, C., Mayes, R. T., Oyola, Y., Saito, T., Janke, C. J., Dai, S., Schneider, E., Sachde, D.: Recovery of uranium from seawater: a review of current status and future research needs. Sep. Sci. Technol. 48, 367 (2013).10.1080/01496395.2012.712599Search in Google Scholar

2. Schenk, H. J., Astheimer, L., Witte, E. G., Schwochau, K.: Development of sorbers for the recovery of uranium from seawater. 1. Assessment of key parameters and screening studies of sorber materials. Sep. Sci. Technol. 17, 1293 (1982).10.1080/01496398208056103Search in Google Scholar

3. Scanlan, J. P.: Equilibria in uranyl carbonate systems. 2. Overall stability constant of UO2(CO3)22- and 3rd formation constant of UO2(CO3)34-. J. Inorg. Nucl. Chem. 39, 635 (1977).10.1016/0022-1902(77)80578-2Search in Google Scholar

4. Choppin, G. R.: Soluble rare-earth and actinide species in seawater. Mar. Chem. 28, 19 (1989).10.1016/0304-4203(89)90184-9Search in Google Scholar

5. Schwochau, K.: Extraction of metals from sea water. In: Inorganic Chemistry, Springer Berlin Heidelberg: 1984, Vol. 124, p. 91.10.1007/3-540-13534-0_3Search in Google Scholar

6. Kanno, M.: Present status of study on extraction of uranium from sea-water. J. Nucl. Sci. Technol. 21, 1 (1984).10.1080/18811248.1984.9731004Search in Google Scholar

7. Sun, Y. B., Yang, S. B., Chen, Y., Ding, C. C., Cheng, W. C., Wang, X. K.: Adsorption and desorption of U(VI) on functionalized graphene oxides: a combined experimental and theoretical study. Environ. Sci. Technol. 49, 4255 (2015).10.1021/es505590jSearch in Google Scholar PubMed

8. Shimizu, T., Tamada, M. In Practical Scale System for Uranium Recovery from Seawater using Braid Type Adsorbent, Proceedings of Civil Engineering in the Ocean, 2004; 2004; p. 617.Search in Google Scholar

9. M. Tamada, N. Seko, Kasai, N., Shimizu, T.: Cost estimation of uranium recovery from seawater with system of braid type adsorbent. Trans. Atom. Energy Soc. Jpn. 5, 358 (2006).10.3327/taesj2002.5.358Search in Google Scholar

10. Gunathilake, C., Gorka, J., Dai, S., Jaroniec, M.: Amidoxime-modified mesoporous silica for uranium adsorption under seawater conditions. J. Mater. Chem. A 3, 11650 (2015).10.1039/C5TA02863ASearch in Google Scholar

11. Hu, J. T., Ma, H. J., Xing, Z., Liu, X. Y., Xu, L., Li, R., Lin, C. J., Wang, M. H., Li, J. Y., Wu, G. Z.: Preparation of amidoximated ultrahigh molecular weight polyethylene fiber by radiation grafting and uranium adsorption test. Ind. Eng. Chem. Res. 55, 4118 (2016).10.1021/acs.iecr.5b03175Search in Google Scholar

12. Suzuki, T., Saito, K., Sugo, T., Ogura, H., Oguma, K.: Fractional elution and determination of uranium and vanadium adsorbed on amidoxime fiber from seawater. Anal. Sci. 16, 429 (2000).10.2116/analsci.16.429Search in Google Scholar

13. Turekian, K. K., Oceans, Foundations of Earth Science Series. In Prentice Hall, Inc., Englewood Cliffs, New Jersey: 1968.Search in Google Scholar

14. Collier, R. W.: Particulate and dissolved vanadium in the North Pacific-Ocean. Nature 309, 441 (1984).10.1038/309441a0Search in Google Scholar

15. Sadoc, A., Messaoudi, S., Furet, E., Gautier, R., Le Fur, E., Le Pollès, L., Pivan, J. Y.: Structure and stability of VO2+ in aqueous solution: a car-parrinello and static Ab initio study. Inorg. Chem. 46, 4835 (2007).10.1021/ic0614519Search in Google Scholar

16. Kelley, S. P., Barber, P. S., Mullins, P. H. K., Rogers, R. D.: Structural clues to UO22+/VO2+ competition in seawater extraction using amidoxime-based extractants. Chem. Commun. 50, 12504 (2014).10.1039/C4CC06370HSearch in Google Scholar

17. Chilou, V., Gouzerh, P., Jeannin, Y., Robert, F.: Synthesis and X-Ray structures of molybdenum(VI) complexes with benzamide oximes. A rare linear tetramolybdenum compound [Mo4O11{p-TolC(NH2)NHO}2{p-TolC(NH)NHO}{p-TolC(NH)NO}]-. J. Chem. Soc. Chem. Comm. 76 (1989).10.1039/c39890000076Search in Google Scholar

18. Bekaroglu, Ö., Sarisaban, S., Koray, A., Ziegler, M.: Die Molekül-und Kristallstruktur von Bis(diaminoglyoximato)kobalt(II)Diamininoglyoxim, Co(C2H5N4O2)2·C2H6N4O2/The Crystal and Molecular Structure of Bis(diaminoglyoximato)cobalt(II)diaminoglyoxim, Co(C2H5N4O2)2·C2H6N4O2. Z. Naturforsch., B: J. Chem. Sci. 32, 387 (1977).10.1515/znb-1977-0407Search in Google Scholar

19. Endres, H., Jannack, T., Prickner, B.: Bis(oxamide oximato)nickel(II)-Oxamide Oxime. Acta Cryst. B36, 2230 (1980).10.1107/S0567740880008473Search in Google Scholar

20. Chilou, V., Gouzerh, P., Jeannin, Y., Robert, F.: Reaction of oxomolybdenum complexes with amidoximes. Synthesis and atructure of a nitrosylacetamidoximato(1-) complex with a N,O-side-on bonded acetamidoximate(1-) ligand: [Mo(acac)2 (CH3C(NH2)NO) (no)]. Inorg. Chim. Acta 133, 205 (1987).10.1016/S0020-1693(00)87766-XSearch in Google Scholar

21. Sun, X. Q., Xu, C., Tian, G. X., Rao, L. F.: Complexation of glutarimidedioxime with Fe(III), Cu(II), Pb(II), and Ni(II), the competing ions for the sequestration of U(VI) from seawater. Dalton Trans. 42, 14621 (2013).10.1039/c3dt51767eSearch in Google Scholar

22. Witte, E. G., Schwochau, K. S., Henkel, G., Krebs, B.: Uranyl complexes of acetamidoxime and benzamidoxime – preparation, characterization, and crystal-structure. Inorg. Chim. Acta 94, 323 (1984).10.1016/S0020-1693(00)84889-6Search in Google Scholar

23. Vukovic, S., Watson, L. A., Kang, S. O., Custelcean, R., Hay, B. P.: How amidoximate binds the uranyl cation. Inorg. Chem. 51, 3855 (2012).10.1021/ic300062sSearch in Google Scholar

24. Astheimer, L., Schenk, H. J., Witte, E. G., Schwochau, K.: Development of sorbers for the recovery of uranium from seawater. 2. The accumulation of uranium from seawater by resins containing amidoxime and imidoxime functional-groups. Sep. Sci. Technol. 18, 307 (1983).10.1080/01496398308068568Search in Google Scholar

25. Kang, S. O., Vukovic, S., Custelcean, R., Hay, B. P.: Cyclic imide dioximes: formation and hydrolytic stability. Ind. Eng. Chem. Res. 51, 6619 (2012).10.1021/ie300492zSearch in Google Scholar

26. Tian, G. X., Teat, S. J., Zhang, Z. Y., Rao, L. F.: sequestering uranium from seawater: binding strength and modes of uranyl complexes with glutarimidedioxime. Dalton Trans. 41, 11579 (2012).10.1039/c2dt30978eSearch in Google Scholar

27. Mehio, N., Johnson, J. C., Dai, S., Bryantsev, V. S.: Theoretical study of the coordination behavior of formate and formamidoximate with dioxovanadium(V) cation: implications for selectivity towards uranyl. Phys. Chem. Chem. Phys. 17, 31715 (2015).10.1039/C5CP06165BSearch in Google Scholar

28. Mehio, N., Ivanov, A. S., Ladshaw, A. P., Dai, S., Bryantsev, V. S.: Theoretical study of oxovanadium(IV) complexation with formamidoximate: implications for the design of uranyl-selective adsorbents. Ind. Eng. Chem. Res. 55, 4231 (2016).10.1021/acs.iecr.5b03398Search in Google Scholar

29. Wang, C. Z., Lan, J. H., Wu, Q. Y., Luo, Q., Zhao, Y. L., Wang, X. K., Chai, Z. F., Shi, W. Q.: Theoretical insights on the interaction of uranium with amidoxime and carboxyl groups. Inorg. Chem. 53, 9466 (2014).10.1021/ic500202gSearch in Google Scholar

30. Omichi, H., Katakai, A., Sugo, T., Okamoto, J.: A new type of amidoxime-group-containing adsorbent for the recovery of uranium from seawater. 2. Effect of grafting of hydrophilic monomers. Sep. Sci. Technol. 21, 299 (1986).10.1080/01496398608058379Search in Google Scholar

31. Kawai, T., Saito, K., Sugita, K., Katakai, A., Seko, N., Sugo, T., Kanno, J., Kawakami, T.: Comparison of amidoxime adsorbents prepared by cografting methacrylic acid and 2-hydroxyethyl methacrylate with acrylonitrile onto polyethylene. Ind. Eng. Chem. Res. 39, 2910 (2000).10.1021/ie990474aSearch in Google Scholar

32. Choi, S. H., Choi, M. S., Park, Y. T., Lee, K. P., Kang, H. D.: Adsorption of uranium ions by resins with amidoxime and amidoxime/carboxyl group prepared by radiation-induced polymerization. Radiat. Phys. Chem. 67, 387 (2003).10.1016/S0969-806X(03)00072-0Search in Google Scholar

33. Ivanov, A. S., Bryantsev, V. S.: Assessing ligand selectivity for uranium over vanadium ions to aid in the discovery of superior adsorbents for extraction of UO22+ from seawater. Dalton Trans. 45, 10744 (2016).10.1039/C6DT01752ESearch in Google Scholar PubMed

34. Ehlers, A. W., Frenking, G.: Theoretical studies of organometallic compounds 7. Structures and bond-energies of the transition-metal hexacarbonyls M(Co)6 (M=Cr, Mo, W). A theoretical study. J. Am. Chem. Soc. 116, 1514 (1994).10.1021/ja00083a040Search in Google Scholar

35. Delley, B., Wrinn, M., Luthi, H. P.: Binding energies, molecular structures, and vibrational frequencies of transition metal carbonyls using density functional theory with gradient corrections. J. Chem. Phys. 100, 5785 (1994).10.1063/1.467142Search in Google Scholar

36. Li, J., Schreckenbach, G., Ziegler, T.: A reassessment of the first metal-carbonyl dissociation-energy in M(Co)4 (M=Ni, Pd, Pt), M(Co)5 (M=Fe, Ru, Os), and M(Co)6 (M=Cr, Mo, W) by a Quasi-relativistic density-functional method. J. Am. Chem. Soc. 117, 486 (1995).10.1021/ja00106a056Search in Google Scholar

37. Frisch, M. J., Trucks, G. W., Schlegel, H. B., Scuseria, G. E., Robb, M. A., Cheeseman, J. R., Scalmani, G., Barone, V., Mennucci, B., Petersson, G. A., Nakatsuji, H., Caricato, M., Li, X., Hratchian, H. P., Izmaylov, A. F., Bloino, J., Zheng, G., Sonnenberg, J. L., Hada, M., Ehara, M., Toyota, K., Fukuda, R., Hasegawa, J., Ishida, M., Nakajima, T., Honda, Y., Kitao, O., Nakai, H., Vreven, T., Montgomery Jr., J. A., Peralta, J. E., Ogliaro, F., Bearpark, M. J., Heyd, J., Brothers, E. N., Kudin, K. N., Staroverov, V. N., Kobayashi, R., Normand, J., Raghavachari, K., Rendell, A. P., Burant, J. C., Iyengar, S. S., Tomasi, J., Cossi, M., Rega, N., Millam, N. J., Klene, M., Knox, J. E., Cross, J. B., Bakken, V., Adamo, C., Jaramillo, J., Gomperts, R., Stratmann, R. E., Yazyev, O., Austin, A. J., Cammi, R., Pomelli, C., Ochterski, J. W., Martin, R. L., Morokuma, K., Zakrzewski, V. G., Voth, G. A., Salvador, P., Dannenberg, J. J., Dapprich, S., Daniels, A. D., Farkas, Ö., Foresman, J. B., Ortiz, J. V., Cioslowski, J., Fox, D. J. Gaussian 09, Rev. A.02, Gaussian, Inc.: Wallingford, CT, 2009.Search in Google Scholar

38. Becke, A. D.: Density-functional thermochemistry. III. The role of exact exchange. J. Chem. Phys. 98, 5648 (1993).10.1063/1.464913Search in Google Scholar

39. Lee, C. T., Yang, W. T., Parr, R. G.: Development of the colle-salvetti correlation-energy formula into a functional of the electron density. Phys. Rev. B 37, 785 (1988).10.1103/PhysRevB.37.785Search in Google Scholar PubMed

40. Dolg, M., Wedig, U., Stoll, H., Preuss, H.: Energy-adjusted abinitio pseudopotentials for the first row transition elements. J. Chem. Phys. 86, 866 (1987).10.1063/1.452288Search in Google Scholar

41. Klamt, A., Schuurmann, G.: Cosmo – a new approach to dielectric screening in solvents with explicit expressions for the screening energy and its gradient. J. Chem. Soc. Perk. T. 2, 799 (1993).10.1039/P29930000799Search in Google Scholar

42. Andzelm, J., Kolmel, C., Klamt, A.: Incorporation of solvent effects into density-functional calculations of molecular-energies and geometries. J. Chem. Phys. 103, 9312 (1995).10.1063/1.469990Search in Google Scholar

43. Barone, V., Cossi, M.: Quantum calculation of molecular energies and energy gradients in solution by a conductor solvent model. J. Phys. Chem. A 102, 1995 (1998).10.1021/jp9716997Search in Google Scholar

44. Cossi, M., Rega, N., Scalmani, G., Barone, V.: Energies, structures, and electronic properties of molecules in solution with the c-pcm solvation model. J. Comput. Chem. 24, 669 (2003).10.1002/jcc.10189Search in Google Scholar PubMed

45. Wang, D., Wilhelmy, S. A. S.: Vanadium speciation and cycling in coastal waters. Mar. Chem. 117, 52 (2009).10.1016/j.marchem.2009.06.001Search in Google Scholar


Supplemental Material:

The online version of this article (DOI: https://doi.org/10.1515/ract-2016-2713) offers supplementary material, available to authorized users.


Received: 2016-10-13
Accepted: 2016-12-19
Published Online: 2017-2-11
Published in Print: 2017-7-26

©2017 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 24.5.2024 from https://www.degruyter.com/document/doi/10.1515/ract-2016-2713/html
Scroll to top button