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Abstract
A deeper analysis on Comparative Quality Estimation is presented by extending the state-

of-the-art methods with adequacy and grammatical features from other Quality Estimation
tasks. The previously used linear method, unable to cope with the augmented features, is
replaced with a boosting classifier assisted by feature selection. The methods indicated show
improved performance for 6 language pairs, when applied on the output from MT systems
developed over 7 years. The improved models compete better with reference-aware metrics.

Notable conclusions are reached through the examination of the contribution of the features
in the models, whereas it is possible to identify common MT errors that are captured by the
features. Many grammatical/fluency features have a good contribution, few adequacy features
have some contribution, whereas source complexity features are of no use. The importance of
many fluency and adequacy features is language-specific.

1. Introduction

The need for automatically predicting the quality of Machine Translation (MT)
output has lead into the development of Quality Estimation (QE; Specia et al., 2009).
Whereas most QE tasks aim at a single judgment, there have been concerns on how
confident one can be in quantifying quality. Humans seem to have difficulty in scor-
ing the quality of translations, particularly in defining the distinction between the
level of quality each score represents (Callison-Burch et al., 2007). A solution would
be to reduce the requirements for the ground truth, by favouring ordinality against
cardinality. This can be done by eliciting judgments of relative quality, through direct
comparisons between two or more translation items (Duh, 2008). For problems that
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require comparisons of performance, it may be beneficial to neglect qualitative obser-
vations that are irrelevant to the comparison and may interfere with the decision.

Following this idea, we are focusing on Comparative QE as the automatic process
of analyzing two or more translations produced by various MT systems and employ-
ing machine learning (ML) to express a judgment about how they compare in terms
of quality. Although a considerable amount of research has employed this concept
for various applications, such as system combination, statistical MT tuning and eval-
uation, there has been little analysis of the very concept of Comparative QE per se.

In this paper we attempt to extend the relatively limited state-of-the-art work and
investigate the factors that play an important role for the task. In particular we will:

• bring features from other QE tasks to Comparative QE: introduce adequacy fea-
tures, augment the grammatical ones with CFG rules and position indicators,

• observe whether linear methods in this problem can cope with the amount and
the type of the advanced features and suggest instead an ensemble classifier

• improve on previous work regarding the competition with reference-aware met-
rics, confirming that elaborate features and ML may provide more information
about relative translation quality than the comparison with the references,

• show which quality indicators are important for comparing MT outputs by in-
vestigating their contribution in the produced models, identify the MT errors
that make these features useful for the automatic comparison of the translations,

• use feature selection methods to select an optimal number of features in order
to improve the performance of the learning method or to achieve the same per-
formance with a smaller amount of features,

• indicate the importance of grammatical features and confirm that the contribu-
tion of specific grammatical features is language-specific

• empirically confirm that source complexity features are not useful for predicting
a comparison between automatic translations.

2. Related Work

The concept of Comparative QE, although not explicitly defined, has been used in
many MT related tasks. In particular, previous works perform it as they:

(a) predict a continuous score independently for each system output and then they
rank the outputs based on their individual score (e.g. Specia et al., 2009),

(b) use binary classification or regression with a cut-off value, to accept/reject a ba-
sic system and then back-off to another system without judging it (Quirk, 2004),

(c) use binary classification to compare two systems (Yasuda et al., 2002) or
(d) use an ordinal ranking (Herbrich et al., 1999) to compare an undefined number

of systems (Hopkins and May, 2011; Avramidis et al., 2011; Formiga et al., 2013).
In this paper we are going to follow on the latter work. It essentially extends the

binary classification (b), with the difference that the underlying classifier is system-
agnostic and that it decides on comparisons for all possible pairs. Contrary to the
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continuous regression approach, the ordinal model only learns a relative notion of
the translation quality, by having quality indicators from all compared outputs.

Formiga et al. (2013) confirm that ordinal regression makes better predictions as
compared to ordering MT outputs, based on separate regression models over absolute
scores of adequacy. When it comes to learning from ordinal rankings, Avramidis and
Popović (2013) set the state-of-the-art performance for German-English, in the frame
of a WMT shared task in QE (Bojar et al., 2013),

Previous work has motivated the use of grammatical features focusing in specific
structures (eg. Mutton et al., 2007), feature selection was motivated by Specia et al.
(2009), whereas an analysis of features was done by Felice and Specia (2012); never-
theless all the above work is limited to non-Comparative QE.

As compared to previous work, here we extend the state-of-the-art on Comparative
QE by increasing the human correlation through the use of a Gradient Boosting clas-
sifier. We add additional linguistically-informed features inspired from other tasks.
We also present a detailed analysis of the contribution of (a) the individual features,
(b) the feature selection and (c) the learning methods. Our models exceed all previous
experiments in coverage, as they expand into 6 language directions and are learned
on outputs from heterogeneous MT systems developed within a period of 7 years.

3. Methods

3.1. Problem definition

This work aims at developing an empirical system which is able to order multiple
translation outputs in the same way humans would do. In particular, the system is
given one source sentence and several translations which have been produced for this
sentence. The goal is to rank them, i.e. to order the translations based on their quality
after deriving several qualitative criteria over the translations.

We define a ranking R = {s, t, r} where a source sentence s is associated with a set
of translations t = (t1, t2, . . . , tm), as tj is the j-th translation of s and m the num-
ber of the translations. Each set of translations t is associated with a list of ordinal
judgments (ranks) r = (r1, r2, . . . , rn), where rj is the judgment on translation tj, as
compared to the other translations in t. This kind of qualitative ordering does not
imply any absolute or generic measure of quality. Ranking takes place on a sentence
level, which means that the inherent mechanism focuses on only one sentence at a
time, considers the available translation options and makes a decision. Any assigned
rank has therefore a meaning only for the sentence-in-focus and given the particular
alternative translation candidates. Each source sentence s(i) is associated with a set of
translations t(i) = (t

(i)
1 , t

(i)
2 , . . . , t

(i)
m )where t(i)j is the j-th translation of the i-th source

sentence and m the number of the translations. Each list of translations is associated
with a list containing relative judgments (ranks) r(i) = (r

(i)
1 , r

(i)
2 , . . . , r

(i)
n ) where r

(i)
j

is the judgment on the j-th translation of the i-th source sentence.
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Counts: number of tokens and unknown words, number of occurrences of the target
word within the target hypothesis (type/token ratio), number of commas and dots,
Parsing: PCFG parsing for both source and target side: the sentence log-likelihood, the
number of n-best trees, the number of VPs in the best parse tree
Source complexity features: average source token length, average number of translations
per source word in the sentence, percentage of unigrams/bigrams/trigrams in frequency
quartiles 1 (lower frequency words) and 4 (high frequency words) in a corpus of the
source language, percentage of source sentence unigrams seen in a corpus
Contrastive scoring: the METEOR score using the competing translations as references

Counts: avg. chars per word, count of nums and of tokens with non-alphabetic characters
Language model: smoothed probability from 3-gram and 5-gram LM, 3-gram perplexity
IBM Model 1: scores on both directions
Contrastive scoring: smoothed BLEU; precision, recall, frag. penalty of METEOR
Unknown words: first and last position of unknown words (absolute and normalized to
the length of the sentence), average and standard dev. of the positions of unknown words
Rule-based correction: total errors, comma/parenthesis+space, uppercase sentence start

Table 1. Upper: Features for the baseline feature set. Lower: Features for the augmented
feature set, added to the baseline features and the grammatical features of Section 3.2

A feature vector is defined as x(i) = G(s(i), t(i)) and it is created from every pair
of source and its translations (s(i), t(i)), where i = 1, 2, . . . n. The function G that
produces the feature vector given a source and its translations is referred to as fea-
ture generation. Each feature vector x(i) derived from the i-th source sentence and the
corresponding list of ranks define an instance I(i) = (x(i), r(i)) and a training set of n
instances is consequently defined as T = {(x(i), r(i))}ni=1. A ranker is a function which
given a feature vector x(i) produces a list of predicted ranks r̂(i). The goal of the learning
process is therefore given the training set T to define a ranker that minimizes the total
error between the predicted list of ranks and the golden list of ranks:

∑m
i=1 E(r(i), r̂

(i)
).

3.2. Feature generation

The baseline feature set (upper Table 1) consists of features that had the optimal
performance as reported in previous work, i.e. the baseline and the best performing
ranking QE features of WMT (Bojar et al., 2013). The augmented feature set extends
the baseline set with features from non-Comparative QE (lower Table 1). Additionally
more fluency features are added, as deemed helpful in the baseline, and adequacy
features are introduced, as they were absent. These features are described below:

We count the node labels of the parse tree, namely NPs, VPs, PPs, verbs, nouns
and for every node label we get the minimum, maximum and average depth/height of
its positions in the tree and the average and standard deviation of its position. Every

310



E. Avramidis Observations on Comparative Quality Estimation for MT (307–318)

parse tree is decomposed into Context-Free Grammar (CFG) rules and for every rule,
we get the number of occurrences and statistics about its height and depth in the tree.
For the rules that contain a VP or a verb, two additional features indicate their distance
from the beginning and the end of the sentences. This is of particular interest for
translations into German, where the position of the VPs in the sentence is important.

A set of alignment features is produced as the nodes between the source and the
target trees are aligned based on the scores of the lexical IBM-1 model (Zhechev, 2009).
For every node alignment, we get the count of the aligned nodes in the sentences, the
count of occurrences of the target CFG rules whose heads are aligned to the similar
rules in the source, the depth of the source node in the source tree and the distance of
the aligned nodes (if related to verbs) from the beginning and the end of the sentence.

This process got all possible alignments of node labels, resulting into 154,657 fea-
tures. Nevertheless, many of these features are sparse, since they depend on the ap-
pearance of grammatical phenomena, so we used some sparsity heuristics resulting
into 139 features: the monolingual CFG features including VPs and NPs with more
than 20k occurrences (5+5 features), CFG alignment features including VPs with more
than 10k occurrences (5) and NPs with more than 30k occurrences (5), CFG position
features with more than 24k occurrences (5), rule-based corrections with more than 1k
occurrences (4) and from the rest of the features, the ones with more than 51k occur-
rences (110 features). This selection aims at making the experiments computationally
feasible, although there is no evidence that the reduced set is optimal.

3.3. Learning Methods and Evaluation

The ranker performs pairwise classification (Avramidis and Popović, 2013). The
baseline uses Logistic Regression with the Newton-Raphson algorithm including Step-
wise Feature Set Selection. As an advanced method, after preliminary experiments1,
we chose a Gradient Boosting of 100 decision trees and 100 boosting stages, limiting
the maximum depth of the individual estimators to 3 and presorting data in order to
find splits faster. Feature selection is done with Recursive Feature Elimination with
cross-validation (RFECV) using SVM (Herbrich et al., 1999) with a linear kernel.

The predicted ranking is evaluated based on its correlation with human rankings,
using Cross Validation with 10 folds over the entire dataset. The correlation metric
is Kendall’s tau as per WMT12: ties and cases of equal disagreement are removed
from the test sets, whereas predicted ties are counted as discordant pairs, occasionally
leading to negative taus.2 Significance tests are based on the theoretical two-tailed t-

1including Decision Trees, Gaussian Naïve Bayes, kNN, LDA, Log. Regression with L2 Regularisation,
Adaboost, Bagging, ExtRa Trees, and Random Forest. The boosting was tested with both 50 and 100 trees

2The evaluation setup differs from that of Bojar et al. (2013) to allow more robust testing, so here we re-
run and evaluate their best methods as our baseline. Under our evaluation setup they result into slightly
different scores
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test of tau and confidence intervals by bootstrap resampling (n = 1000, α = 0.05).
NDCG is considered as an additional ranking metric (Järvelin and Kekäläinen, 2002).

4. Experiments

The experiments are performed on MT output from WMT annotated with human
rankings (WMT2008-2014; e.g. Bojar et al., 2013) for English to German, French, Span-
ish and vice-versa, but advanced feature engineering is done only for German due
to the increased MT errors for this language. A separate model is trained for every
language direction. Per language pair, there are about 7k sentences from the news
domain translated by about 100 systems. Translations of each sentence are grouped
randomly into batches of 5 and ranked by various annotators. This provides 13k-25k
batches, resulting into 64k to 100k pairwise comparisons. The vast majority of the
systems are phrase-based and variations, whereas only 5% are rule-based.

Feature generation and learning are run with Qualitative (Avramidis, 2016), PCFG
is run with the Berkeley Parser pre-trained on the TIGER, TueBaD/Z, AncoRa and FTB
treebanks (Petrov et al., 2006) and rule-based correction is run with LanguageTool3.

4.1. Ranking performance

In this experiment (a) we test whether the predicted rankings have any correlation
with human rankings, (b) we compare the augmented ranking mechanism against the
baseline and a random ranking and (c) we compare the augmented ranking mech-
anism against state-of-the-art reference-aware metrics. The metrics compared are:
BLEU with sentence-level smoothing (Papineni et al., 2001), METEOR, (Denkowski
and Lavie, 2014), rgbF (Popović, 2012), WER and TER (Snover et al., 2006).

Results The results (Table 2) indicate that (a) the predicted rankings have significant
correlation with human rankings with a t-test p-value almost zero, (b) the predicted
rankings are significantly better than random ones. The augmented ranking mecha-
nism has achieved improved correlation against the baseline ranking mechanism.

A notable improvement over the baseline is that (c) the augmented ranking mecha-
nism performs significantly better than the state-of-the-art reference-aware automatic
metrics on a sentence level for the language pairs involving German, where focused
feature engineering took place. It also outperforms other metrics in language pairs
where the feature engineering from other language pairs was adopted, apart from
one metric, METEOR, which is on par with the ranking mechanism. This confirms
that elaborate features and ML may provide more information about relative transla-
tion quality than direct comparison with references.

3http://languagetool.org
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lang. basel. augm. random BLEU METEOR rgbF TER WER

de-en 0.26* 0.28* -0.14 -0.22 ‡ 0.23 ‡ 0.16 ‡ -0.02 ‡ 0.15 ‡
en-de 0.15* 0.17* -0.17 -0.42 ‡ 0.13 ‡ 0.10 ‡ -0.09 ‡ -0.15 ‡
es-en 0.11* 0.22* -0.18 -0.19 ‡ 0.22 ⋄ 0.16 ‡ -0.02 ‡ 0.13 ‡
en-es 0.11* 0.12* -0.17 -0.21 ‡ 0.12 ⋄ 0.09 ⋄ -0.10 ‡ 0.08 ‡
fr-en 0.18* 0.19* -0.18 -0.18 ‡ 0.20 ⋄ 0.15 ‡ -0.02 ‡ 0.16 ‡
en-fr 0.20* 0.21* -0.15 -0.12 ‡ 0.18 ⋄ 0.15 ‡ -0.03 ‡ 0.15 ‡

‡: augmented ranking mechanism is significantly better than metric
⋄: augmented ranking mechanism is significantly as good as metric
*: correlation with humans is significant, with a measured p < 4 · 10−20

Table 2. Basic vs. augmented ranking mechanism with random ranking and automatic
metrics, concerning correlation with human judgments (tau) on segment-level

4.2. Observations on the baseline features

Useful conclusions concerning the contributions of various features can be drawn
by examining the estimated beta coefficients of the logistic regression model of the
baseline. For every coefficient, the null hypothesis of it being equal to zero has been
rejected with a χ-test. The sign (positive/negative) of the coefficient indicates whether
the feature has a positive or a negative contribution to the selection of the translation
by the humans. Also, since the feature values are normalized with their mean and
variance, the coefficient may provide indications for the importance of the features
on the final decision. Some observations on the beta coefficients (Table 3) are:

Number of unknown words: Although OOVs are not necessarily untranslated
words, when two translations of the same source have a different amount of unknown
words, it is more likely that the one with the most of them has failed to translate some.

Overall amount of tokens: Statistical systems often omit the translation of some
source words. This occurs when words suggested by the translation model reduce
dramatically the overall score during the decoding process. Manual evaluation in-
dicates that this occurs with long-distance re-ordering of German verbs, not scored
properly by the language model. Therefore, when a translation has less words than
its competitor, it may be the case that a useful word was omitted. Additional words
also occur as a translation error, e.g. when phrases chosen during the decoding of a
phrase-based system overlap partially. A special case of this, when the same word is
repeated in the generated translation (type/token ratio) is given a negative coefficient.

Contrastive scoring: When more than one systems perform the same translation,
they often convey more correct information collectively than each of them. Therefore,
a system output that agrees more with the majority of the other systems is more likely
to be preferred as the best translation.
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The number of verb phrases (VPs) is connected with the fluency, as a result of the
parser having tried to analyze the sentence and identify the VPs. Among translation
errors, it is more likely that a VP is not formed properly, than having superfluous VPs
formed by mistake. Therefore, it is observed that if a translation has more VPs than
its competitor, it is more likely to be chosen. Similarly, when the parser analyses a
translation, it creates n-best lists with trees with all possible grammatical analyses.
The size of the list can indicate how ambiguous the parse is and therefore a translation
with fewer n-best trees is more preferable for comparing translations. The parse log-
likelihood also has a positive contribution, as an indication of grammaticality.

Punctuation count indicates that translation systems often make mistakes with
punctuation and it is more likely to select a translation when it has fewer commas, or
when it has more dots. Systems erroneously create too many commas or omit dots.

Finally, there is little explanation of the low, albeit negative contribution of the
tri-gram LM probability, since one would expect that a higher probability would be
preferable. One could assume that this is interacting with some other features, e.g. to
favour grammatical features over the LM, or that some MT systems overvalue the LM
score, which is also the reason for the omission of German verbs, mentioned earlier.

There can also be conclusions about the features which were assigned a zero coef-
ficient. Using this, we can see that out of the non-comparative QE features only the
punctuation features, the type/token ratio and the tri-gram probability helped, added
to the target sentence length, which already existed as a feature. Source complexity
features have been also assigned zero coefficients, so we can confirm that they play
no role in the comparison between translations and that they do not introduce any
useful knowledge about the relative ability of the systems to translate these sentences.

4.3. Machine Learning method and Feature Selection

Here, we investigate (a) the effect of adding the augmented feature set on the base-
line model with Logistic Regression (b) the possibility to reduce the amount of fea-
tures by performing Feature Selection (c) the improvements by using an ensemble
instead of a linear classifier and finally (d) the effect of adding/removing features.

Feature Selection is applied only for German-English and English-German on a
sub-set of the full-dataset. Since RFECV does not scale well, it is run on a stratified
sample resulting into the 2.5% of the original sentences of a single fold for German-
English and the 5% for English-German4. The selected feature set was used to train
and evaluate the ranking model with 10-folded cross-validation, as above.

Results The results of using RFECV and Gradient Boosting can be seen in Table 4.
Simply adding the augmented feature set on the baseline model with the Logistic

4Although this small sample is not guaranteed to be enough for feature selection, we will show that it
is enough for reducing the feature size without harming the overall performance
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feature name (target sentence) β

number of unknown words -0.58
number of tokens 0.50
contrastive METEOR 0.29
number of VPs 0.17
number of n-best trees -0.17
type/token radio -0.14
number of commas -0.11
sentence parse log-likelihood 0.08
3-gram probability -0.05
number of dots 0.04
…other features of Table 1 0.00

Table 3. Logistic Regression coefficients
for the baseline, in descending order of

absolute values

lang. method set tau NDCG
de-en LogReg basic 0.261 0.730

full 0.110 0.680
RFECV 0.181 0.716

GradBoost basic 0.265 0.736
full 0.280 0.742
RFECV 0.276 0.739

en-de LogReg basic 0.151 0.725
full 0.034 0.703
RFECV 0.020 0.696

GradBoost basic 0.138 0.723
full 0.170 0.733
RFECV 0.174 0.731

Table 4. Performance of the basic, the full
feature set and the result of the RFECV with
Logistic Regression and Gradient Boosting

Regression causes a significant drop, indicating that this method is not capable of
handling such an amount and type of features, possibly because it cannot handle non-
linear indicators. RFECV improves significantly the performance of Logistic Regres-
sion on the augmented feature set for German-English, but it still does not reach the
performance of the same algorithm with the baseline set. For English-German, both
the full set and the RFECV lead to almost zero correlation.

When it comes to using the advanced feature set, Gradient Boosting achieves sig-
nificantly better performance than Logistic Regression. Using RFECV to reduce the
full set has a negligible effect on the model trained with Gradient Boosting. Although
the usage of RFECV did not improve the performance, it is interesting that the number
of features (139) was reduced to less than the half, but the correlation remained the
same. Reducing the amount of features can be of interest in an application environ-
ment, since it also reduces the computation. The above observation can also be seen in
Figure 1, which depicts the increase in the classification quality, as features are added
in the model. The optimal set for German-English contains 41 features, whereas the
English-German one contains 56 features. The performance reaches already high lev-
els with an amount of about 25 features and after a few fluctuations it enters a plateau
where more features do not have a significant implication to the model.

4.4. Observations on the advanced features

Whereas 139 features were passed to Feature Selection, the latter favoured a sig-
nificantly smaller number of features, nevertheless leading to the same performance.
We can use the results of the selection to (a) identify important differences between
the baseline and the augmented set and (b) compare between the two language direc-
tions. Some observations on the selection (Table 5) are:
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Figure 1. Number of features selected by
RFECV vs. classification accuracy

language pair de-en en-de
Tree nodes
nouns (count) +
nouns (average position) + +
nouns (std of positions) +
NPs (count) + +
NPs (average position) +
NPs (std of positions) + +
VPs (std of positions) +
VPs (avg, max tree height) + +
PPs (count, std of positions) +
CFG rules
NP→DT-NN (count) +
PP→IN-NP (count) +
VP→TO-VP (count) +
S→VP (position from end) +
VP→VP (position from end) +
Aligned CFG rules and nodes
S→NP-VP (count/depth/pos.) +
NP (count) +

Table 5. Grammatical features selected
by RFECV

Augmented vs. baseline feature set: Although source complexity features were
ruled out during Logistic Regression, Feature Selection for the augmented set favours
few features that do include source information through the alignment of grammati-
cal structures between source and target. For German-English, these are the statistics
of the alignment of the simplest CFG sentence rule (S→NP-VP), whereas for English-
German the aligned NPs. The contribution of these alignments is reasonable, given
their grammatical operation and density. Additionally, this indicates that although
simple features based on source information may be of little use, targeted features that
capture translation adequacy on particular structures can still be of high relevance for
comparing translations. Finally, it is worth noting that single features from the ba-
sic ranking mechanism have been replaced by a multitude of more specific features
with similar functionality (e.g. the count of VPs has been replaced with counts of
VPs within more fine-grained rules). This can be attributed to the advanced learning
method which can handle better a larger amount of partially overlapping features.

Comparison between language pairs: Language-specific differences are shown
by the grammatical that were automatically selected. The ones selected for English-
German indicate the importance of the position of the VPs and the PPs in the sentence,
obviously justified by the German positional requirements. This is in contrast to
German-English, which get no features referring to the position of VPs or PPs. For
the direction into English we can note the CFG rules that relate with grammatical
phenomena which may be often mistranslated, such as the NPs with a determiner
and a noun, the VPs containing a gerund and the PPs with the preposition “in”.
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5. Conclusion and further work

We have built on top of previous state-of-the-art work on Comparative Quality Es-
timation by introducing adequacy features and severely augmenting the grammat-
ical/fluency features with CFG rules and position indicators. Logistic Regression
used previously cannot handle properly the advanced features, possibly because they
are non-linearly separable, so we introduced a Gradient Boosting classifier that could
cope better with the problem and improve the performance of the ranking.

We tested the methods with 6 language directions by training on the output of sys-
tems spanning 7 years of development. The models can compete better against state-
of-the-art reference-aware metrics on the segment-level, particularly when language-
specific feature engineering took place, confirming previous observations that elabo-
rate features with ML can compete direct scoring against references. The contribution
of grammatical features is notable and it is possible to identify common MT errors that
justify the empirically estimated contribution of particular indicators. The use of most
grammatical features strongly depends on the target language, e.g. position of VPs
is important for German. The majority of the features indicate fluency, few features
indicate adequacy, whereas source complexity features are of no importance.

Although these experiments are based on empirical analysis on the output of a
broad set of MT systems, we are aware that we are missing some significant represen-
tation of Neural MT, which has changed considerably the quality and the error types
of MT. Investigations to this direction will be inevitably part of further work.
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