Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter August 7, 2013

Polymers as enhancers of photodynamic activity of chlorin photosensitizers for photodynamic therapy

Polymere als Verstärker der photodynamischen Aktivität von Chlorin-Photosensibilisatoren für die Photodynamische Therapie

  • Nadezhda A. Aksenova , Timur M. Zhientaev , Anna A. Brilkina , Ljubov V. Dubasova , Andrey V. Ivanov EMAIL logo , Peter S. Timashev , Nicolay S. Melik-Nubarov and Anna B. Solovieva

Abstract:

The impact of water-soluble and amphiphilic polymers with different structures, namely carboxymethyl cellulose (CMC), polyvinyl alcohol (PVA) and polyvinylpyrrolidone (PVP), was studied on the photoactivity of chlorin photosensitizers (PSs) in photodynamic therapy (PDT). It was shown that such polymers can cause a considerable increase in the PS activity, both in the process of singlet oxygen photogeneration in cell experiments, and in the model reaction of a substrate photooxidation in water. Amongst the studied polymers, CMC and PVP appeared to have the most significant influence on the photoactivity of PSs. The observed effect of the polymers on the photosensitizing activity of PSs can be attributed to the presence of chlorin-polymer interactions resulting in the porphyrin disaggregation in aqueous phase. The effect of the polymers on the photocytotoxicity of PSs is attributed to the absence of interactions between chlorin and polypeptide or lipoproteins which results in a decrease of the photoactivity of chlorins in cell culture. The PS/polymer systems appear to be a new effective dosage form of PDT drugs.

Zusammenfassung:

Die Wirkung von wasserlöslichen und amphiphilen Polymeren mit unterschiedlichen Strukturen (Carboxymethylcellulose, CMC; Polyvinylalkohol, PVA; Polyvinylpyrrolidon, PVP), auf die Photoaktivität von Chlorin-Photosensibilisatoren (PS) in der photodynamischen Therapie (PDT) wurde untersucht. Es wurde gezeigt, dass solche Polymere eine erhebliche Steigerung der PS-Aktivität bewirken können, sowohl im Prozess der Singulett-Sauerstoff-Generation in Zellexperimenten als auch in der Modellreaktion einer Substrat-Photooxidation in Wasser. Unter den untersuchten Polymeren schienen CMC und PVP den größten signifikanten Einfluss auf die Photoaktivität der PS zu haben. Die beobachtete Wirkung der Polymere auf die photosensibilisierende Aktivität der PS kann auf das Vorhandensein von Chlorin-Polymer-Wechselwirkungen zurückgeführt werden, die in einer Porphyrin-Disaggregation in wässriger Phase resultieren. Die Wirkung der Polymere auf die Photozytotoxizität der PS wiederum ist auf das Fehlen von Wechselwirkungen zwischen Chlorin und Polypeptid bzw. Lipoproteinen zurückzuführen, die zu einer Abnahme der Photoaktivität von Chlorin in der Zellkultur führt. Die PS/Polymer-Systeme scheinen eine neue wirksame Darreichungsform von PDT-Medikamenten zu sein.


Corresponding author: Andrey V. Ivanov, N. N. Blokhin Cancer Research Center, Russian Academy of Medical Sciences, Kashirskoe Shosse 24, 115478 Moscow, Russian Federation

This work was supported by the Russian Foundation for Basic Research (projects numbers 13-03-00429-a, 11-02-01090-a and 11-03-12074-ofi-m). The PS/polymer formulations were generously prepared by N. N. Glagolev (Semenov Institute of Chemical Physics, Russian Academy of Sciences, Moscow, Russia). NIH-3T3-EWS-FLI1 mouse fibroblasts were a generous gift of Prof. C. Malvy (Institut Gustave Roussy, Villejuif, France). The photodynamic activity of HBL-100 and Skov-3 cells was studied by E. Yu. Filinova (N. N. Blokhin Cancer Research Center, Russian Academy of Medical Sciences).

References

[1] Dougherty TJ, Gomer CJ, Henderson BW, Jori G, Kessel D, Korbelik M, Moan J, Peng Q. Photodynamic therapy. J Natl Cancer Inst 1998;90(12):889–905.10.1093/jnci/90.12.889Search in Google Scholar

[2] Henderson BW, Dougherty TJ. How does photodynamic therapy work? Photochem Photobiol 1992;55(1):145–57.10.1111/j.1751-1097.1992.tb04222.xSearch in Google Scholar

[3] Hamblin MR, Hasan T. Photodynamic therapy: a new antimicrobial approach to infectious disease? Photochem Photobiol Sci 2004;3(5):436–50.10.1039/b311900aSearch in Google Scholar

[4] Jori G, Fabris C, Soncin M, Ferro S, Coppellotti O, Dei D, Fantetti L, Chiti G, Roncucci G. Photodynamic therapy in the treatment of microbial infections: basic principles and perspective applications. Lasers Surg Med 2006;38(5):468–81.10.1002/lsm.20361Search in Google Scholar

[5] Tegos GP, Hamblin MR. Phenothiazinium antimicrobial photosensitizers are substrates of bacterial multidrug resistance pumps. Antimicrob Agents Chemother 2006;50(1):196–203.10.1128/AAC.50.1.196-203.2006Search in Google Scholar

[6] Levy JG. Photodynamic therapy. Trends Biotechnol 1995;13(1):14–8.10.1016/S0167-7799(00)88895-2Search in Google Scholar

[7] Krasnovsky AA Jr. Primary mechanisms of photoactivation of molecular oxygen. History of development and the modern status of research. Biochemistry (Mosc) 2007;72(10):1065–80.10.1134/S0006297907100057Search in Google Scholar

[8] Morton CA. Methyl aminolevulinate (Metvix) photodynamic therapy – practical pearls. J Dermatolog Treat 2003;14(Suppl 3):23–6.10.1080/jdt.14.s3.23.26Search in Google Scholar PubMed

[9] Sibata CH, Colussi VC, Oleinick NL, Kinsella TJ. Photodynamic therapy: a new concept in medical treatment. Braz J Med Biol Res 2000;33(8):869–80.10.1590/S0100-879X2000000800002Search in Google Scholar

[10] Fontana CR, dos Santos DS Jr, Bosco JM, Spolidorio DM, Chiérici Marcantonio RA. Evaluation of chitosan gel as antibiotic and photosensitizer delivery. Drug Deliv 2008;15(7):417–22.10.1080/10717540802007433Search in Google Scholar PubMed

[11] Chin WW, Heng PW, Thong PS, Bhuvaneswari R, Hirt W, Kuenzel S, Soo KC, Olivo M. Improved formulation of photosensitizer chlorin e6 polyvinylpyrrolidone for fluorescence diagnostic imaging and photodynamic therapy of human cancer. Eur J Pharm Biopharm 2008;69(3):1083–93.10.1016/j.ejpb.2008.02.013Search in Google Scholar

[12] Chin WW, Heng PW, Olivo M. Chlorin e6 – polyvinylpyrrolidone mediated photosensitization is effective against human non-small cell lung carcinoma compared to small cell lung carcinoma xenografts. BMC Pharmacol 2007;7:15.10.1186/1471-2210-7-15Search in Google Scholar

[13] Li B, Moriyama EH, Li F, Jarvi MT, Allen C, Wilson BC. Diblock copolymer micelles deliver hydrophobic protoporphyrin IX for photodynamic therapy. Photochem Photobiol 2007;83(6):1505–12.10.1111/j.1751-1097.2007.00194.xSearch in Google Scholar

[14] Fuchs BB, Tegos GP, Hamblin MR, Mylonakis E. Susceptibility of Cryptococcus neoformans to photodynamic inactivation is associated with cell wall integrity. Antimicrob Agents Chemother 2007;51(8):2929–36.10.1128/AAC.00121-07Search in Google Scholar

[15] Roby A, Erdogan S, Torchilin VP. Solubilization of poorly soluble PDT agent, meso-tetraphenylporphin, in plain or immunotargeted PEG-PE micelles results in dramatically improved cancer cell killing in vitro. Eur J Pharm Biopharm 2006;62(3):235–40.10.1016/j.ejpb.2005.09.010Search in Google Scholar

[16] Isakau HA, Parkhats MV, Knyukshto VN, Dzhagarov BM, Petrov EP, Petrov PT. Toward understanding the high PDT efficacy of chlorin e6-polyvinylpyrrolidone formulations: photophysical and molecular aspects of photosensitizer-polymer interaction in vitro. J Photochem Photobiol B 2008;92(3):165–74.10.1016/j.jphotobiol.2008.06.004Search in Google Scholar

[17] Kubin A, Loew HG, Burner U, Jessner G, Kolbabek H, Wierrani F. How to make hypericin water-soluble. Pharmazie 2008;63(4):263–9.Search in Google Scholar

[18] Kojima C, Toi Y, Harada A, Kono K. Preparation of poly(ethylene glycol)-attached dendrimers encapsulating photosensitizers for application to photodynamic therapy. Bioconjug Chem 2007;18(3):663–70.10.1021/bc060244uSearch in Google Scholar

[19] Regehly M, Greish K, Rancan F, Maeda H, Böhm F, Röder B. Water-soluble polymer conjugates of ZnPP for photodynamic tumor therapy. Bioconjug Chem 2007;18(2):494–9.10.1021/bc060158uSearch in Google Scholar

[20] Khdair A, Gerard B, Handa H, Mao G, Shekhar MP, Panyam J. Surfactant-polymer nanoparticles enhance the effectiveness of anticancer photodynamic therapy. Mol Pharm 2008;5(5):795–807.10.1021/mp800026tSearch in Google Scholar

[21] Mosmann T. Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J Immunol Methods 1983;65(1–2):55–63.10.1016/0022-1759(83)90303-4Search in Google Scholar

[22] Gorokh YA, Aksenova NA, Solovieva AB, Olshevskaya VA, Zaitsev AV, Lagutina MA, Luzgina VN, Mironov AF, Kalinin VN. The influence of amphiphilic polymers on the photocatalytic activity of water-soluble porphyrin photosensitizers. Russ J Phys Chem A 2011;85(5):871–5.10.1134/S003602441105013XSearch in Google Scholar

[23] Aksenova NA, Oles T, Sarna T, Glagolev NN, Chernjak AV, Volkov VI, Kotova SL, Melik-Nubarov NS, Solovieva AB. Development of novel formulations for photodynamic therapy on the basis of amphiphilic polymers and porphyrin photosensitizers. Porphyrin-polymer complexes in model photosensitized processes. Laser Phys 2012;22(10):1642–49.10.1134/S1054660X12100015Search in Google Scholar

[24] Zhientaev TM, Melik-Nubarov NS, Litmanovich EA, Aksenova NA, Glagolev NN, Solov’eva AB. The effect of pluronics on the photocatalytic activity of water-soluble porphyrins. Polym Sci Ser A 2009;51(5):502–11.10.1134/S0965545X09050034Search in Google Scholar

[25] Solov’eva AB, Melik-Nubarov NS, Zhiyentayev TM, Tolstih PI, Kuleshov II, Aksenova NA, Litmanovich EA, Glagolev NN, Timofeeva VA, Ivanov AV. Development of novel formulations for photodynamic therapy on the basis of amphiphilic polymers and porphyrin photosensitizers. Pluronic influence on photocatalytic activity of porphyrins. Laser Phys 2009;19(4):817–24.Search in Google Scholar

[26] Solov’eva AB, Aksenova NA, Glagolev NN, Melik-Nubarov NS, Ivanov AV, Volkov VI, Chernyak AV. Amphiphilic polymers in photodynamic therapy. Russ J Phys Chem B 2012;6(3):433–40.10.1134/S1990793112060061Search in Google Scholar

[27] Alarcón E, Edwards AM, Garcia AM, Muñoz M, Aspée A, Borsarelli CD, Lissi EA. Photophysics and photochemistry of zinc phthalocyanine/bovine serum albumin adducts. Photochem Photobiol Sci 2009;8(2):255–63.10.1039/b815726jSearch in Google Scholar PubMed

[28] Evstigneeva RP. Supramolecular systems on the base of porphyrin with amino acids and peptides. Uspehi himii porphirinov 1999;2:115–26.Search in Google Scholar

Erhalten: 2013-2-1
Revidiert: 2013-5-21
Angenommen: 2013-5-28
Online erschienen: 2013-8-7
Erschienen im Druck: 2013-8-1

©2013 by Walter de Gruyter Berlin Boston

Downloaded on 22.5.2024 from https://www.degruyter.com/document/doi/10.1515/plm-2013-0011/html
Scroll to top button