Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter February 18, 2013

A possible quantitative Mueller matrix transformation technique for anisotropic scattering media/Eine mögliche quantitative Müller-Matrix-Transformations-Technik für anisotrope streuende Medien

  • Honghui He , Nan Zeng , E Du , Yihong Guo , Dongzhi Li , Ran Liao and Hui Ma EMAIL logo

Abstract

By conducting both the experiments on samples containing well-aligned fibers and Monte Carlo simulations based on the sphere cylinder scattering model (SCSM), we present a Mueller matrix transformation (MMT) method for quantitatively characterizing the properties of anisotropic scattering media. We obtained a set of parameters by fitting the Mueller matrix elements to trigonometric curves in polar coordinates. These new parameters can be expressed as analytical functions of the Mueller matrix elements and display simple relationships to the structural and optical properties of the anisotropic scattering media, such as the anisotropy, the direction of the fibers, and the sizes of the scatterers. Experimental results on biological tissues show that these new parameters can be used in biomedical research. However, further studies are still necessary to correlate the MMT parameters to pathological features.

Zusammenfassung

Mit der Durchführung von Experimenten an Proben mit gut ausgerichteten Fasern sowie von Monte-Carlo-Simulationen basierend auf dem Kugel-Zylinder-Streumodell (sphere cylinder scattering model, SCSM) wird eine Müller-Matrix-Transformations (MMT)-Methode zur quantitativen Charakterisierung der Eigenschaften von anisotropen Streumedien vorgestellt. Durch die Anpassung („Fit“) der Müller-Matrix-Elemente an trigonometrische Kurven in Polarkoordinaten erhält man eine Vielzahl von Parametern. Diese neuen Parameter können als analytische Funktion der Müller-Matrix-Elemente ausgedrückt werden und zeigen einfache Beziehungen zu den strukturellen und optischen Eigenschaften des anisotropen Streumediums, wie z.B. der Anisotropie, der Richtung der Fasern und der Größe der Streuer. Experimentelle Ergebnisse an biologischen Geweben zeigen, dass diese neuen Parameter in der biomedizinischen Forschung verwendet werden können. Dennoch sind weitere Studien notwendig, um die MMT-Parameter mit pathologischen Merkmalen zu korrelieren.


Corresponding author: Hui Ma, Shenzhen Key Laboratory for Minimal Invasive Medical Technologies, Graduate School at Shenzhen, Tsinghua University, Shenzhen 518055, China; Laboratory of Optical Imaging and Sensing, Graduate School at Shenzhen, Tsinghua University, Shenzhen 518055, China; and Department of Physics, Tsinghua University, Beijing 100084, China

This work was supported by the National Natural Science Foundation of China (NSFC) Grants No. 10974114, 11174178, 41106034, 61205199, and Open Fund of Key Laboratory of Optoelectronic Information and Sensing Technologies of Guangdong Higher Education Institutes, Jinan University.

References

[1] Bohren CF, Huffman DR. Absorption and scattering of light by small particles. Weinheim: Wiley, 1983.Search in Google Scholar

[2] Ye HM, Xu J, Freudenthal J, Kahr B. On the circular birefringence of polycrystalline polymers: polylactide. J Am Chem Soc 2011;133(35):13848–51.10.1021/ja205159uSearch in Google Scholar PubMed

[3] Johnson PM, Bret BP, Rivas JG, Kelly JJ, Lagendijk A. Anisotropic diffusion of light in a strongly scattering material. Phys Rev Lett 2002;89(24):243901.10.1103/PhysRevLett.89.243901Search in Google Scholar PubMed

[4] Nerbø IS, Le Roy S, Foldyna M, Søndergård E, Kildemo M. Real-time in situ Mueller matrix ellipsometry of GaSb nanopillars: observation of anisotropic local alignment. Opt Express 2011;19(13):12551–61.10.1364/OE.19.012551Search in Google Scholar PubMed

[5] He HH, Zeng N, Liao R, Yun TL, Li W, He YH, Ma H. Application of sphere-cylinder scattering model to skeletal muscle. Opt Express 2010;18(14):15104–12.10.1364/OE.18.015104Search in Google Scholar PubMed

[6] Kienle A, Forster FK, Hibst R. Anisotropy of light propagation in biological tissue. Opt Lett 2004;29(22):2617–9.10.1364/OL.29.002617Search in Google Scholar

[7] Kienle A, Hibst R. Light guiding in biological tissue due to scattering. Phys Rev Lett 2006;97(1):018104.10.1103/PhysRevLett.97.018104Search in Google Scholar PubMed

[8] Backman V, Wallace MB, Perelman LT, Arendt JT, Gurjar R, Müller MG, Zhang Q, Zonios G, Kline E, McGilligan JA, Shapshay S, Valdez T, Badizadegan K, Crawford JM, Fitzmaurice M, Kabani S, Levin HS, Seiler M, Dasari RR, Itzkan I, Van Dam J, Feld MS. Detection of preinvasive cancer cells. Nature 2000;406(6791):35–6. Erratum in Nature 2000;408(6811):428.Search in Google Scholar

[9] Qiu L, Pleskow DK, Chuttani R, Vitkin E, Leyden J, Ozden N, Itani S, Guo L, Sacks A, Goldsmith JD, Modell MD, Hanlon EB, Itzkan I, Perelman LT. Multispectral scanning during endoscopy guides biopsy of dysplasia in Barrett’s esophagus. Nat Med 2010;16(5):603–6.10.1038/nm.2138Search in Google Scholar PubMed PubMed Central

[10] Gurjar RS, Backman V, Perelman LT, Georgakoudi I, Badizadegan K, Itzkan I, Dasari RR, Feld MS. Imaging human epithelial properties with polarized light-scattering spectroscopy. Nat Med 2001;7(11):1245–8.10.1038/nm1101-1245Search in Google Scholar PubMed

[11] Jacques SL, Ramella-Roman JC, Lee K. Imaging skin pathology with polarized light. J Biomed Opt 2002;7(3):329–40.10.1117/1.1484498Search in Google Scholar PubMed

[12] Jacques SL, Samantham R, Isenhath S, Ken L. Polarized light camera to guide surgical excision of skin cancers. Proc SPIE 2008;6842:68420I-1.10.1117/12.761823Search in Google Scholar

[13] Jiang XY, Zeng N, He YH, Ma H. Investigation of linear polarization difference imaging based on rotation of incident and backscattered polarization angles. Prog Biochem Biophys 2007;34(6):659–62.Search in Google Scholar

[14] Zeng N, Jiang XY, Gao Q, He YH, Ma H. Linear polarization difference imaging and its potential applications. Appl Opt 2009;48(35):6734–9.10.1364/AO.48.006734Search in Google Scholar PubMed

[15] Liao R, Zeng N, Jiang XY, Li DZ, Yun TL, He YH, Ma H. Rotating linear polarization imaging technique for anisotropic tissues. J Biomed Opt 2010;15(3):036014.10.1117/1.3442730Search in Google Scholar PubMed

[16] Shao H, He Y, Li W, Ma H. Polarization-degree imaging contrast in turbid media: a quantitative study. Appl Opt 2006;45(18):4491–6.10.1364/AO.45.004491Search in Google Scholar

[17] He HH, Zeng N, Li W, Yun TL, Liao R, He YH, Ma H. Two-dimensional backscattering Mueller matrix of sphere-cylinder scattering medium. Opt Lett 2010;35(14):2323–5.10.1364/OL.35.002323Search in Google Scholar PubMed

[18] Lu SY, Chipman RA. Interpretation of Mueller matrices based on polar decomposition. J Opt Soc Am A 1996;13(5):1106–13.10.1364/JOSAA.13.001106Search in Google Scholar

[19] Ghosh N, Wood MFG, Vitkin IA. Influence of the order of the constituent basis matrices on the Mueller matrix decomposition-derived polarization parameters in complex turbid media such as biological tissues. Opt Commun 2010;283(6):1200–8.10.1016/j.optcom.2009.10.111Search in Google Scholar

[20] Dubreuil M, Babilotte P, Martin L, Sevrain D, Rivet S, Le Grand Y, Le Brun G, Turlin B, Le Jeune B. Mueller matrix polarimetry for improved liver fibrosis diagnosis. Opt Lett 2012;37(6):1061–3.10.1364/OL.37.001061Search in Google Scholar PubMed

[21] Ghosh N, Wood MF, Li SH, Weisel RD, Wilson BC, Li RK, Vitkin IA. Mueller matrix decomposition for polarized light assessment of biological tissues. J Biophotonics 2009;2(3):145–56.10.1002/jbio.200810040Search in Google Scholar PubMed

[22] Ghosh N, Wood MF, Vitkin IA. Mueller matrix decomposition for extraction of individual polarization parameters from complex turbid media exhibiting multiple scattering, optical activity, and linear birefringence. J Biomed Opt 2008;13(4):044036.10.1117/1.2960934Search in Google Scholar PubMed

[23] Ellingsen PG, Lilledahl MB, Aas LM, Davies Cde L, Kildemo M. Quantitative characterization of articular cartilage using Mueller matrix imaging and multiphoton microscopy. J Biomed Opt 2011;16(11):116002.10.1117/1.3643721Search in Google Scholar PubMed

[24] He HH, Zeng N, Li DZ, Liao R, Ma H. Quantitative Mueller matrix polarimetry techniques for biological tissues. J Innov Opt Health Sci 2012. doi: 10.1142/S1793545812500174.10.1142/S1793545812500174Search in Google Scholar

[25] Yun TL, Zeng N, Li W, Li DZ, Jiang XY, Ma H. Monte Carlo simulation of polarized photon scattering in anisotropic media. Opt Express 2009;17(19):16590–602.10.1364/OE.17.016590Search in Google Scholar PubMed

[26] Du E, He HH, Zeng N, Guo YH, Liao R, He YH, Ma H. Two-dimensional backscattering Mueller matrix of sphere-cylinder birefringence media. J Biomed Opt 2012;17(12):126016.10.1117/1.JBO.17.12.126016Search in Google Scholar PubMed

Received: 2012-10-10
Revised: 2013-1-7
Accepted: 2013-1-23
Published Online: 2013-2-18
Published in Print: 2013-5-1

©2013 by Walter de Gruyter Berlin Boston

Downloaded on 26.4.2024 from https://www.degruyter.com/document/doi/10.1515/plm-2012-0052/html
Scroll to top button