Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter May 3, 2023

Multinuclear solid state nuclear magnetic resonance for studying CsPbBr3 nanocubes

  • Andrea Scarperi , Noemi Landi ORCID logo , Alessio Gabbani ORCID logo , Nabila Jarmouni ORCID logo , Silvia Borsacchi ORCID logo , Lucia Calucci ORCID logo , Andrea Pucci ORCID logo , Elisa Carignani ORCID logo EMAIL logo , Francesco Pineider ORCID logo and Marco Geppi ORCID logo

Abstract

Cesium lead bromide perovskite (CsPbBr3) nanocrystals have raised impressive interest as efficient and stable optoelectronic materials. Size and morphology play important roles in the final performances of these materials and advanced characterization studies are needed to elucidate structural and surface properties. In this work, CsPbBr3 cubic nanocrystals were obtained by colloidal synthesis and characterized by multinuclear Solid State NMR (SSNMR), complemented by X-Ray Diffraction (XRD), Transmission Electron Microscopy (TEM) and optical spectroscopy. The multinuclear NMR approach allowed the different components of the nanocubes to be separately observed. In particular, the surface ligands and their interactions with the nanocubes surface were investigated by 1H and 13C NMR experiments, while the structural investigation of the perovskite nanocubes was addressed by exploiting 207Pb and 133Cs spectral properties in comparison with bulk CsPbBr3. Static 207Pb NMR spectra indicated a possible contribution of chemical shift anisotropy from the 207Pb nuclei of the outer layer. The 133Cs NMR spectra showed signals with different chemical shifts for cesium atoms in at least three regions of the nanocubes, from the inner core to the surface, which were interpreted in terms of cubic layers with different distances from the surface using a simple geometrical model. This interpretation was also supported by 133Cs longitudinal relaxation time measurements.


Article note:

A collection of invited papers based on presentations at the Italian-French International Conference on Magnetic Resonance, Milan, Italy, 27–30 September 2022.



Corresponding author: Elisa Carignani, Institute for the Chemistry of Organometallic Compound, National Council of Research (ICCOM-CNR), via Moruzzi 1, 56124 Pisa, Italy, e-mail:

Funding source: Ministero dell’Università e della Ricerca

Award Identifier / Grant number: PRIN Project 2017CR5WCH Q-CHISS

Funding source: Regione Toscana

Award Identifier / Grant number: POR FESR 2014-2020, grant n. 3553.04032020.1580004

Acknowledgment

Dr. Elvira Fantechi and Dr. Laura Chelazzi (Centro di Cristallografia Strutturale, University of Florence) are acknowledged for their help in X-ray Powder Diffraction analysis. Dr. Paolo Lucchesi (CIME, University of Pisa) is acknowledged for his assistance in TEM analysis. CISUP (Centre for Instrument Sharing–University of Pisa) is acknowledged for the use of the Bruker Avance Neo 500 Solid State NMR Spectrometer.

  1. Research funding: A. G. and F. P. acknowledge the support of Italian Ministry of Education and Research (MIUR) through PRIN Project 2017CR5WCH Q-CHISS. A. P. and M. G. acknowledge the support of “Regione Toscana” through COLOURS project, POR FESR 2014–2020, grant no. 3553.04032020.158000411.

References

[1] A.S. Bhalla, R. Guo, R. Roy. Mater. Res. Innov. 4, 3 (2000), https://doi.org/10.1007/s100190000062.Search in Google Scholar

[2] K. Wang, D. Yang, C. Wu, M. Sanghadasa, S. Priya. Prog. Mater. Sci. 106, 100580 (2019), https://doi.org/10.1016/j.pmatsci.2019.100580.Search in Google Scholar

[3] Z. Wang, Z. Shi, T. Li, Y. Chen, W. Huang. Angew. Chem., Int. Ed. 56, 1190 (2016), https://doi.org/10.1002/anie.201603694.Search in Google Scholar PubMed

[4] A.F. Akbulatov, S.Y. Luchkin, L.A. Frolova, N.N. Dremova, K.L. Gerasimov, I.S. Zhidkov, D.V. Anokhin, E.Z. Kurmaev, K.J. Stevenson, P.A. Troshin. J. Phys. Chem. Lett. 8, 1211 (2017), https://doi.org/10.1021/acs.jpclett.6b03026.Search in Google Scholar PubMed

[5] D. Yang, M. Cao, Q. Zhong, P. Li, X. Zhang, Q. Zhang. J. Mater. Chem. C 7, 757 (2019), https://doi.org/10.1039/c8tc04381g.Search in Google Scholar

[6] Z. Wei, J. Xing. J. Phys. Chem. Lett. 10, 3035 (2019), https://doi.org/10.1021/acs.jpclett.9b00277.Search in Google Scholar PubMed

[7] K. Wang, S. Wang, S. Xiao, Q. Song. Adv. Opt. Mater. 6, 1800278 (2018), https://doi.org/10.1002/adom.201800278.Search in Google Scholar

[8] A. Privitera, M. Righetto, F. Cacialli, M.K. Riede. Adv. Opt. Mater. 9, 2100215 (2021), https://doi.org/10.1002/adom.202100215.Search in Google Scholar

[9] M. Hao, Y. Bai, S. Zeiske, L. Ren, J. Liu, Y. Yuan, N. Zarrabi, N. Cheng, M. Ghasemi, P. Chen, M. Lyu, D. He, J.H. Yun, Y. Du, Y. Wang, S. Ding, A. Armin, P. Meredith, G. Liu, H.M. Cheng, L. Wang. Nat. Energy 5, 79 (2020), https://doi.org/10.1038/s41560-019-0535-7.Search in Google Scholar

[10] N.S. Peighambardoust, E. Sadeghi, U. Aydemir. ACS Appl. Nano Mater. 5, 14092 (2022), https://doi.org/10.1021/acsanm.2c02787.Search in Google Scholar

[11] M.C. Brennan, J.E. Herr, T.S. Nguyen-Beck, J. Zinna, S. Draguta, S. Rouvimov, J. Parkhill, M. Kuno. J. Am. Chem. Soc. 139, 12201 (2017), https://doi.org/10.1021/jacs.7b05683.Search in Google Scholar PubMed

[12] M.C. Brennan, J. Zinna, M. Kuno. ACS Energy Lett. 2, 1487 (2017), https://doi.org/10.1021/acsenergylett.7b00383.Search in Google Scholar

[13] J. Shamsi, A.S. Urban, M. Imran, L. de Trizio, L. Manna. Chem. Rev. 119, 3296 (2019), https://doi.org/10.1021/acs.chemrev.8b00644.Search in Google Scholar PubMed PubMed Central

[14] A. Dey, J. Ye, A. De, E. Debroye, S.K. Ha, E. Bladt, A.S. Kshirsagar, Z. Wang, J. Yin, Y. Wang, L.N. Quan, F. Yan, M. Gao, X. Li, J. Shamsi, T. Debnath, M. Cao, M.A. Scheel, S. Kumar, J.A. Steele, M. Gerhard, L. Chouhan, K. Xu, X. Wu, Y. Li, Y. Zhang, A. Dutta, C. Han, I. Vincon, A.L. Rogach, A. Nag, A. Samanta, B.A. Korgel, C.-J. Shih, D.R. Gamelin, D.H. Son, H. Zeng, H. Zhong, H. Sun, H.V. Demir, I.G. Scheblykin, I. Mora-Seró, J.K. Stolarczyk, J.Z. Zhang, J. Feldmann, J. Hofkens, J.M. Luther, J. Pérez-Prieto, L. Li, L. Manna, M.I. Bodnarchuk, M.V. Kovalenko, M.B.J. Roeffaers, N. Pradhan, O.F. Mohammed, O.M. Bakr, P. Yang, P. Müller-Buschbaum, P.V. Kamat, Q. Bao, Q. Zhang, R. Krahne, R.E. Galian, S.D. Stranks, S. Bals, V. Biju, W.A. Tisdale, Y. Yan, R.L.Z. Hoye, L. Polavarapu. ACS Nano 15, 10775 (2021), https://doi.org/10.1021/acsnano.0c08903.Search in Google Scholar PubMed PubMed Central

[15] X. Kong, H. Yu, F. Xu, L. Liu, Y. Wu, B. Cao. ACS Appl. Nano Mater. 5, 12395 (2022), https://doi.org/10.1021/acsanm.2c03101.Search in Google Scholar

[16] A.A.M. Brown, N. Mathews, P. Vashishtha, T.J.N. Hooper, Y.F. Ng, G.V. Nutan, Y. Fang, D. Giovanni, J.N. Tey, L. Jiang, B. Damodaran, T.C. Sum, S.H. Pu, S.G. Mhaisalkar. Chem. Mater. 33, 2387 (2021), https://doi.org/10.1021/acs.chemmater.0c04569.Search in Google Scholar

[17] A.A.M. Brown, T.J.N. Hooper, S.A. Veldhuis, X.Y. Chin, A. Bruno, P. Vashishtha, J.N. Tey, L. Jiang, B. Damodaran, S.H. Pu, S.G. Mhaisalkar, N. Mathews. Nanoscale 11, 12370 (2019), https://doi.org/10.1039/c9nr02566a.Search in Google Scholar PubMed

[18] R. Begum, X.Y. Chin, B. Damodaran, T.J.N. Hooper, S. Mhaisalkar, N. Mathews. ACS Appl. Nano Mater. 3, 1766 (2020), https://doi.org/10.1021/acsanm.9b02450.Search in Google Scholar

[19] V.K. Ravi, P.K. Santra, N. Joshi, J. Chugh, S.K. Singh, H. Rensmo, P. Ghosh, A. Nag. J. Phys. Chem. Lett. 8, 4988 (2017), https://doi.org/10.1021/acs.jpclett.7b02192.Search in Google Scholar PubMed

[20] D. Quarta, M. Imran, A.L. Capodilupo, U. Petralanda, B. van Beek, F. de Angelis, L. Manna, I. Infante, L. de Trizio, C. Giansante. J. Phys. Chem. Lett. 10, 3715 (2019), https://doi.org/10.1021/acs.jpclett.9b01634.Search in Google Scholar PubMed

[21] F. Aiello, S. Masi. J. Nanomater. 11, 2024 (2021), https://doi.org/10.3390/nano11082024.Search in Google Scholar PubMed PubMed Central

[22] W.M.J. Franssen, A.P.M. Kentgens. Solid State Nucl. Magn. Reson. 100, 36 (2019), https://doi.org/10.1016/j.ssnmr.2019.03.005.Search in Google Scholar PubMed

[23] L. Piveteau, V. Morad, M.V. Kovalenko. J. Am. Chem. Soc. 142, 19413 (2020), https://doi.org/10.1021/jacs.0c07338.Search in Google Scholar PubMed PubMed Central

[24] D.J. Kubicki, S.D. Stranks, C.P. Grey, L. Emsley. Nat. Rev. Chem. 5, 624 (2021), https://doi.org/10.1038/s41570-021-00309-x.Search in Google Scholar PubMed

[25] M. Aebli, L. Piveteau, O. Nazarenko, B.M. Benin, F. Krieg, R. Verel, M.V. Kovalenko. Sci. Rep. 10, 8229 (2020), https://doi.org/10.1038/s41598-020-65071-4.Search in Google Scholar PubMed PubMed Central

[26] A. Ray, D. Maggioni, D. Baranov, Z. Dang, M. Prato, Q.A. Akkerman, L. Goldoni, E. Caneva, L. Manna, A.L. Abdelhady. Chem. Mater. 31, 7761 (2019), https://doi.org/10.1021/acs.chemmater.9b02944.Search in Google Scholar PubMed PubMed Central

[27] A. Karmakar, M.S. Dodd, X. Zhang, M.S. Oakley, M. Klobukowski, V.K. Michaelis. Chem. Comm. 55, 5079 (2019), https://doi.org/10.1039/c8cc09622h.Search in Google Scholar PubMed

[28] Y. Chen, S.R. Smock, A.H. Flintgruber, F.A. Perras, R.L. Brutchey, A.J. Rossini. J. Am. Chem. Soc. 142, 6117 (2020), https://doi.org/10.1021/jacs.9b13396.Search in Google Scholar PubMed

[29] P. Vashishtha, T.J.N. Hooper, Y. Fang, D. Kathleen, D. Giovanni, M. Klein, T.C. Sum, S.G. Mhaisalkar, N. Mathews, T. White. Nanoscale 13, 59 (2021), https://doi.org/10.1039/d0nr08093d.Search in Google Scholar PubMed

[30] P. Vashishtha, S.A. Veldhuis, S.S.H. Dintakurti, N.L. Kelly, B.E. Griffith, A.A.M. Brown, M.S. Ansari, A. Bruno, N. Mathews, Y. Fang, T. White, S.G. Mhaisalkar, J.V. Hanna. J. Mater. Chem. C 8, 11805 (2020), https://doi.org/10.1039/d0tc02038a.Search in Google Scholar

[31] J. Shamsi, D. Kubicki, M. Anaya, Y. Liu, K. Ji, K. Frohna, C.P. Grey, R.H. Friend, S.D. Stranks. ACS Energy Lett. 5, 1900 (2020), https://doi.org/10.1021/acsenergylett.0c00935.Search in Google Scholar PubMed PubMed Central

[32] T.J.N. Hooper, Y. Fang, A.A.M. Brown, S.H. Pu, T.J. White. Nanoscale 13, 15770 (2021), https://doi.org/10.1039/d1nr04602k.Search in Google Scholar PubMed

[33] M. Imran, V. Caligiuri, M. Wang, L. Goldoni, M. Prato, R. Krahne, L. de Trizio, L. Manna. J. Am. Chem. Soc. 140, 2656 (2018), https://doi.org/10.1021/jacs.7b13477.Search in Google Scholar PubMed PubMed Central

[34] R.K. Harris, E.D. Becker, S.M. Cabral De Menezes, P. Granger, R.E. Hoffman, K.W. Zilm. Pure Appl. Chem. 80, 59 (2008), https://doi.org/10.1016/j.ssnmr.2008.02.004.Search in Google Scholar PubMed

[35] C.C. Stoumpos, C.D. Malliakas, J.A. Peters, Z. Liu, M. Sebastian, J. Im, T.C. Chasapis, A.C. Wibowo, D.Y. Chung, A.J. Freeman, B.W. Wessels, M.G. Kanatzidis. Cryst. Growth Des. 13, 2722 (2013), https://doi.org/10.1021/cg400645t.Search in Google Scholar

[36] S. Toso, Q.A. Akkerman, B. Martín-García, M. Prato, J. Zito, I. Infante, Z. Dang, A. Moliterni, C. Giannini, E. Bladt, I. Lobato, J. Ramade, S. Bals, J. Buha, D. Spirito, E. Mugnaioli, M. Gemmi, L. Manna. J. Am. Chem. Soc. 142, 10198 (2020), https://doi.org/10.1021/jacs.0c03577.Search in Google Scholar PubMed PubMed Central

[37] Y. Vasquez, Z. Luo, R.E. Schaak. J. Am. Chem. Soc. 130, 11866 (2008), https://doi.org/10.1021/ja804858u.Search in Google Scholar PubMed

[38] M.C. Brennan, M. Kuno, S. Rouvimov. Inorg. Chem. 58, 1555 (2019), https://doi.org/10.1021/acs.inorgchem.8b03078.Search in Google Scholar PubMed

[39] P. Cottingham, R.L. Brutchey. Chem. Comm. 52, 5246 (2016), https://doi.org/10.1039/c6cc01088a.Search in Google Scholar PubMed

[40] C.F. Holder, R.E. Schaak. ACS Nano 13, 7359 (2019), https://doi.org/10.1021/acsnano.9b05157.Search in Google Scholar PubMed

[41] S.R. Smock, T.J. Williams, R.L. Brutchey. Angew. Chem. 130, 11885 (2018), https://doi.org/10.1002/anie.201806916.Search in Google Scholar PubMed PubMed Central

[42] F. Liu, Y. Zhang, C. Ding, S. Kobayashi, T. Izuishi, N. Nakazawa, T. Toyoda, T. Ohta, S. Hayase, T. Minemoto, K. Yoshino, S. Dai, Q. Shen. ACS Nano 11, 10373 (2017), https://doi.org/10.1021/acsnano.7b05442.Search in Google Scholar PubMed

[43] X. Lu, M.S. Yavuz, H.Y. Tuan, B.A. Korgel, Y. Xia. J. Am. Chem. Soc. 130, 8900 (2008), https://doi.org/10.1021/ja803343m.Search in Google Scholar PubMed

[44] Q. Zhong, M. Cao, Y. Xu, P. Li, Y. Zhang, H. Hu, D. Yang, Y. Xu, L. Wang, Y. Li, X. Zhang, Q. Zhang. Nano Lett. 19, 4151 (2019), https://doi.org/10.1021/acs.nanolett.9b01666.Search in Google Scholar PubMed

[45] S. Borsacchi, M. Geppi, L. Ricci, G. Ruggeri, C.A. Veracini. Langmuir 23, 3953 (2007), https://doi.org/10.1021/la063040a.Search in Google Scholar PubMed

[46] W. Gao, L. Dickinson, C. Grozinger, F.G. Morin, L. Reven. Langmuir 12, 6429 (1996), https://doi.org/10.1021/la9607621.Search in Google Scholar

[47] K.J. Crowley, R.T. Forbes, P. York, D.C. Apperley, H. Nyqvist, O. Camber. J. Pharm. Sci. 89, 1286 (2000), https://doi.org/10.1002/1520-6017(200010)89:10<1286::aid-jps6>3.0.co;2-o.10.1002/1520-6017(200010)89:10<1286::AID-JPS6>3.0.CO;2-OSearch in Google Scholar

[48] J. Lee, W. Lee, K. Kang, T. Lee, S.K. Lee. Chem. Mater. 33, 370 (2021), https://doi.org/10.1021/acs.chemmater.0c04078.Search in Google Scholar

[49] B.A. Rosales, L. Men, S.D. Cady, M.P. Hanrahan, A.J. Rossini, J. Vela. Chem. Mater. 28, 6848 (2016), https://doi.org/10.1021/acs.chemmater.6b01874.Search in Google Scholar

[50] W.M.J. Franssen, S.G.D. van Es, R. Dervişoǧlu, G.A. de Wijs, A.P.M. Kentgens. J. Phys. Chem. Lett. 8, 61 (2017), https://doi.org/10.1021/acs.jpclett.6b02542.Search in Google Scholar

[51] D.J. Kubicki, D. Prochowicz, A. Hofstetter, S.M. Zakeeruddin, M. Grätzel, L. Emsley. J. Am. Chem. Soc. 139, 14173 (2017), https://doi.org/10.1021/jacs.7b07223.Search in Google Scholar PubMed PubMed Central

[52] D.J. Kubicki, D. Prochowicz, A. Pinon, G. Stevanato, A. Hofstetter, S.M. Zakeeruddin, M. Grätzel, L. Emsley. J. Mater. Chem. A 7, 2326 (2019), https://doi.org/10.1039/c8ta11457a.Search in Google Scholar

Published Online: 2023-05-03
Published in Print: 2023-10-26

© 2023 IUPAC & De Gruyter

Downloaded on 10.6.2024 from https://www.degruyter.com/document/doi/10.1515/pac-2023-0110/html
Scroll to top button