Skip to content
BY-NC-ND 3.0 license Open Access Published by De Gruyter (O) August 24, 2016

Crystal structure of (Z)-4-((E)-(4-chlorobenzyli-dene)hydrazono)-1-p-tolylpyrrolidine-3-carbonitrile, C19H17ClN4

  • Gamal A. El-Hiti EMAIL logo , Bakr F. Abdel-Wahab , Mohammed Baashen , Amany S. Hegazy and Benson M. Kariuki

Abstract

C19H17ClN4, triclinic, P1̅ (no. 2), a = 6.9042(5) Å, b = 7.1990(5) Å, c = 18.2633(13) Å, α = 86.727(6)°, β = 79.214(6)°, γ = 69.876(7)°, V = 837.25(11) Å3, Z = 2, Rgt(F) = 0.0553, wRref(F2) = 0.1406, T = 296(2) K.

CCDC no.:: 1498676

The crystal structure is shown in the figure. Tables 1 and 2 contain details of the measurement method and a list of the atoms including atomic coordinates and displacement parameters.

Table 1:

Data collection and handling.

Crystal:Colourless plate Size 0.21 × 0.18 × 0.05 mm
Wavelength:Mo Kα radiation (0.71073 Å)
μ:2.4 cm−1
Diffractometer, scan mode:SuperNova, ω-scans
2θmax, completeness:59.6°, >83%
N(hkl)measured, N(hkl)unique, Rint:8852, 3988, 0.028
Criterion for Iobs, N(hkl)gt:Iobs > 2 σ(Iobs), 2319
N(param)refined:218
Programs:CrysAlisPRO [12], SHELX [13], WinGX [14]
Table 2:

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2).

AtomxyzUiso*/Ueq
C10.2692(4)0.4285(4)0.36369(14)0.0644(7)
C20.0725(4)0.4147(4)0.37520(14)0.0674(7)
H2−0.00930.43240.42260.081*
C3−0.0015(4)0.3742(4)0.31516(13)0.0609(6)
H3−0.13490.36500.32250.073*
C40.1176(3)0.3468(3)0.24428(12)0.0488(5)
C50.3180(3)0.3591(4)0.23488(13)0.0598(6)
H50.40190.33940.18780.072*
C60.3924(4)0.4002(4)0.29443(14)0.0693(7)
H60.52600.40870.28770.083*
C70.0339(3)0.3141(3)0.18069(12)0.0495(5)
H7−0.10200.31160.18740.059*
C80.1742(3)0.2465(3)−0.01152(12)0.0429(5)
C90.3736(3)0.2436(3)−0.03389(12)0.0464(5)
C100.4383(3)0.2147(4)−0.11651(13)0.0543(6)
H10A0.48830.3187−0.13930.065*
H10B0.54690.0874−0.12900.065*
C110.0826(3)0.2213(3)−0.07661(11)0.0460(5)
H11A0.05680.0967−0.07420.055*
H11B−0.04760.3288−0.07910.055*
C120.5147(3)0.2577(3)0.01114(13)0.0498(5)
C130.2382(3)0.1710(3)−0.21074(12)0.0498(5)
C140.4040(4)0.1529(4)−0.26947(14)0.0620(6)
H140.52490.1710−0.26080.074*
C150.3916(4)0.1082(4)−0.34065(15)0.0723(7)
H150.50520.0965−0.37880.087*
C160.2154(4)0.0804(4)−0.35716(14)0.0654(7)
C170.0522(4)0.0980(3)−0.29824(13)0.0604(6)
H17−0.06810.0794−0.30720.072*
C180.0604(4)0.1418(3)−0.22680(13)0.0543(6)
H18−0.05330.1522−0.18880.065*
C190.1986(5)0.0364(5)−0.43580(15)0.0952(10)
H19A0.2842−0.0978−0.44900.143*
H19B0.24570.1245−0.47010.143*
H19C0.05530.0549−0.43790.143*
N10.1460(3)0.2890(3)0.11594(10)0.0474(4)
N20.0582(3)0.2650(3)0.05747(10)0.0500(5)
H2A−0.06730.26190.06450.060*
N30.2442(3)0.2245(3)−0.13973(10)0.0552(5)
N40.6383(3)0.2673(3)0.04327(12)0.0617(5)
Cl10.36114(14)0.48795(15)0.43835(4)0.1048(3)

Source of material

(Z)-4-((E)-(4-chlorobenzylidene)hydrazono)-1-p-tolylpyrroli-dine-3-carbonitrile was synthesized from reaction of equimolar quantities of 4-hydrazono-1-p-tolylpyrrolidine-3-carbonitrile and 4-chorobenzaldehyde in ethanol in the presence of few drops of glacial acetic acid under reflux for 1 h. The solid produced was filtered, dried and recrystallized from dimethylformamide to give colourless crystals of the title compound (Mp 210–211 °C) [1].

Experimental details

All hydrogen atoms were placed in calculated positions and refined using a riding model. Methylene C—H bonds were fixed at 0.97 Å and methyl C—H bonds at 0.96 Å with 1.5Ueq(C). Methyl groups were allowed to spin about the C—C bond. Aromatic C—H distances were set to 0.93 Å and N—H set to 0.86 Å with Uiso set to 1.2Ueq (N/C).

Discussion

The most efficient syntheses of pyrrolidines involve reactions of primary amines with diols in the presence of a metal complex catalyst [2, 3], of primary amines with dihaloalkanes in the presence of potassium carbonate under microwave conditions [4], of cyclization of amino alcohols in the presence of thionyl chloride [5] and of N-tosylhydrazones with vinyl iodides in the presence of a Pd-catalyst [6]. They can be used as inhibitors for thrombin, and as antiarrhythmic and antihypertensive drugs [7, 8, 9, 10, 11].

The asymmetric unit comprises one molecule. The molecule is almost planar as the angle between the chlorobenzene and tolylpyrrolidine-carbonitrile groups is 7.52(6)° and between the latter group and the toluene group is 7.33(8)°. In the crystal, the molecules are linked by N—H⋯N hydrogen bonds to form chains aligned to [010]. For the hydrogen bond, the N2⋯N4 distance is 2.953(2) Å and the N2—H2a⋯N4 angle is 161.0°. A short Cl⋯Cl contact of 3.27 Å is observed in the structure.

Acknowledgements:

The authors extend their appreciation to the College of Applied Medical Sciences Research Centre and the Deanship of Scientific Research at King Saud University for their funding and to Cardiff University for continued support.

References

1. Abdalla, M. M.; Abdel-Wahab, B. F.; Amr, A. -G. E.: Synthesis and serotonin antagonist and antianexity activities of pyrrolidine derivatives from 4-hydrazinyl-1-p-substituted phenyl-2,5-dihydro-1H-pyrrole-3-carbonitriles. Monatsh. Chem. 140 (2009) 129–137.10.1007/s00706-008-0012-7Search in Google Scholar

2. Fujita, K.-I.; Fujii, T.; Yamaguchi, R.: Cp*Ir complex-catalyzed N-heterocyclization of primary amines with diols: a new catalytic system for environmentally benign synthesis of cyclic amines. Org. Lett. 6 (2004) 3525–3528.10.1021/ol048619jSearch in Google Scholar PubMed

3. Hamid, M. H. S. A.; Allen, C. L.; Lamb, G. W.; Maxwell, A. C.; Maytum, H. C.; Watson, A. J. A.; Williams, J. M. J.: Ruthenium-catalyzed N-alkylation of amines and sulfonamides using borrowing hydrogen methodology. J. Am. Chem. Soc. 131 (2009) 1766–1774.10.1021/ja807323aSearch in Google Scholar PubMed

4. Ju, Y.; Varma, R. S.: Aqueous N-heterocyclization of primary amines and hydrazines with dihalides: microwave-assisted syntheses of N-azacycloalkanes, isoindole, pyrazole, pyrazolidine, and phthalazine derivatives. J. Org. Chem. 71 (2006) 135–141.10.1021/jo051878hSearch in Google Scholar PubMed

5. Xu, F.; Simmons, B.; Reamer, R. A.; Corley, E.; Murry, J.; Tschaen, D.: Chlorination/cyclodehydration of amino alcohols with SOCl2: an old Reaction revisited. J. Org. Chem. 73 (2008) 312–315.10.1021/jo701877hSearch in Google Scholar PubMed

6. Khanna, A.; Maung, C.; Johnson, K. R.; Luong, T. T.; Van Vranken, D. L.: Carbenylative amination with N-tosylhydrazones. Org. Lett. 14 (2012) 3233–3235.10.1021/ol301385gSearch in Google Scholar PubMed

7. Mack, H.; Pfeiffer, T.; Hornberger, W.; Böhm, H. J.; Höffken, H. W.: Design, synthesis and biological activity of novel rigid amidinophenylalanine derivatives as inhibitors of thrombin. J. Enzyme Inhib. 9 (1995) 73–86.10.3109/14756369509040682Search in Google Scholar PubMed

8. Adam, W.; Zhang, A.: High π-facial selectivity through chelation of magnesium ions in the DMD epoxidation of α,β-unsaturated imides with chiral pyrrolidinone auxiliaries. Eur. J. Org. Chem. 1 (2004) 147–152.10.1002/chin.200416041Search in Google Scholar

9. Amer, F. A.-K.; Hammouda, M.; El-Ahl, A.-A. S.; Abdel-Wahab, B. F.: Synthesis and reactions of 3-pyrrolidinones. J. Heterocycl. Chem. 45 (2008) 1549–1569.10.1002/jhet.5570450602Search in Google Scholar

10. Ha, Y. M; Kim, J.-A.; Park, Y. J.; Choi, Y. J.; Kim, J. M.; Chung, K. W.; Han, Y. K.; Park, J. Y.; Lee, J. Y.; Moon, H. R.; Chung, H. Y.: Synthesis and biological activity of hydroxybenzylidenyl pyrrolidine-2,5-dione derivatives as new potent inhibitors of tyrosinase. Med. Chem. Commun. 2 (2011) 542–549.10.1039/c0md00234hSearch in Google Scholar

11. Bini, D.; Cardona, F.; Forcella, M.; Parmeggiani, C.; Parenti, P.;Nicotra, F.; Cipolla, L.: Synthesis and biological evaluation of nojirimycinand pyrrolidine-based trehalase inhibitors. Beilstein J. Org. Chem. 8 (2012) 514–521.10.3762/bjoc.8.58Search in Google Scholar PubMed PubMed Central

12. Agilent. CrysAlisPRO. Agilent Technologies, Yarnton, England, (2014).Search in Google Scholar

13. Sheldrick, G. M.: A short history of SHELX. Acta Crystallogr. A64 (2008) 112–122.10.1107/S0108767307043930Search in Google Scholar PubMed

14. Farrugia, L. J.: WinGX and ORTEP for Windows: an update. J. Appl. Crystallogr. 45 (2012) 849–854.10.1107/S0021889812029111Search in Google Scholar

Received: 2016-6-17
Accepted: 2016-8-10
Published Online: 2016-8-24
Published in Print: 2016-12-1

©2016 Gamal A. El-Hiti et al., published by De Gruyter.

This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.

Downloaded on 30.4.2024 from https://www.degruyter.com/document/doi/10.1515/ncrs-2016-0079/html
Scroll to top button