Skip to content
BY-NC-ND 3.0 license Open Access Published by De Gruyter October 6, 2015

Propagation and survival of frequency-bin entangled photons in metallic nanostructures

  • Laurent Olislager , Wakana Kubo , Takuo Tanaka , Simona Ungureanu , Renaud A. L. Vallée , Branko Kolaric EMAIL logo , Philippe Emplit and Serge Massar
From the journal Nanophotonics

Abstract

We report on the design of two plasmonic nanostructures and the propagation of frequency-bin entangled photons through them. The experimental findings clearly show the robustness of frequency-bin entanglement, which survives after interactions with both a hybrid plasmo-photonic structure, and a nano-pillar array. These results confirm that quantum states can be encoded into the collective motion of a many-body electronic system without demolishing their quantum nature, and pave the way towards applications of plasmonic structures in quantum information.

References

[1] Zubin Jacob and Vladimir Shalaev. Plasmonics goes quantum. 2011.10.1126/science.1211736Search in Google Scholar PubMed

[2] Zubin Jacob. Quantum plasmonics. Mrs Bull., 37(08):761-767, 2012.10.1557/mrs.2012.175Search in Google Scholar

[3] M S Tame, K R McEnery, S K Özdemir, J Lee, S A Maier, and M S Kim. Quantum plasmonics. Nat. Phys., 9(6):329-340, 2013.10.1038/nphys2615Search in Google Scholar

[4] Michael A Nielsen and Isaac L Chuang. Quantum computation and quantum information. Cambridge university press, 2010.10.1017/CBO9780511976667Search in Google Scholar

[5] Igor Aharonovich, Andrew D Greentree, and Steven Prawer. Diamond photonics. Nat. Photonics, 5(7):397-405, 2011.10.1038/nphoton.2011.54Search in Google Scholar

[6] Alexander Huck, Shailesh Kumar, Abdul Shakoor, and Ulrik L Andersen. Controlled coupling of a single nitrogen-vacancy center to a silver nanowire. Phys. Rev. Lett., 106(9):96801, 2011.10.1103/PhysRevLett.106.096801Search in Google Scholar PubMed

[7] H F Schouten, N Kuzmin, G Dubois, T D Visser, G Gbur, P F A Alkemade, H Blok, D Lenstra, E R Eliel, and Others. Plasmon-assisted two-slit transmission: Young’s experiment revisited. Phys. Rev. Lett., 94(5):53901, 2005.Search in Google Scholar

[8] Sylvain Fasel, Matthäus Halder, Nicolas Gisin, and Hugo Zbinden. Quantum superposition and entanglement of mesoscopic plasmons. New J. Phys., 8(1):13, 2006.10.1088/1367-2630/8/1/013Search in Google Scholar

[9] A V Akimov, AMukherjee, C L Yu, D E Chang, A S Zibrov, P R Hemmer, H Park, and M D Lukin. Generation of single optical plasmons in metallic nanowires coupled to quantum dots. Nature, 450(7168):402-406, 2007.10.1038/nature06230Search in Google Scholar PubMed

[10] Roman Kolesov, Bernhard Grotz, Gopalakrishnan Balasubramanian, Rainer J Stöhr, Aurélien A L Nicolet, Philip R Hemmer, Fedor Jelezko, and JörgWrachtrup. Wave-particle duality of single surface plasmon polaritons. Nat. Phys., 5(7):470-474, 2009.10.1038/nphys1278Search in Google Scholar

[11] Giuliana Di Martino, Yannick Sonnefraud, Stéphane Kéna- Cohen, Mark Tame, Sahin K Özdemir, M S Kim, and Stefan A Maier. Quantum statistics of surface plasmon polaritons in metallic stripe waveguides. Nano Lett., 12(5):2504-2508, 2012.10.1021/nl300671wSearch in Google Scholar PubMed

[12] Yong-Jing Cai, Ming Li, Xi-Feng Ren, Chang-Ling Zou, Xiao Xiong, Hua-Lin Lei, Bi-Heng Liu, Guo-Ping Guo, and Guang-Can Guo. High visibility on-chip quantum interference of single surface plasmons. arXiv Prepr. arXiv1402.0955, 2014.Search in Google Scholar

[13] Alexander Huck, Stephan Smolka, Peter Lodahl, Anders S Sø rensen, Alexandra Boltasseva, Jiri Janousek, and Ulrik L Andersen. Demonstration of quadrature-squeezed surface plasmons in a gold waveguide. Phys. Rev. Lett., 102(24):246802, 2009.10.1103/PhysRevLett.102.246802Search in Google Scholar PubMed

[14] A Gonzalez-Tudela, Diego Martin-Cano, Esteban Moreno, Luis Martin-Moreno, C Tejedor, and Francisco J Garcia-Vidal. Entanglement of two qubits mediated by one-dimensional plasmonic waveguides. Phys. Rev. Lett., 106(2):20501, 2011.10.1103/PhysRevLett.106.020501Search in Google Scholar PubMed

[15] ReinierWHeeres, Leo P Kouwenhoven, and Valery Zwiller. Quantum interference in plasmonic circuits. Nat. Nanotechnol., 8(10):719-722, 2013.10.1038/nnano.2013.150Search in Google Scholar PubMed

[16] S Dutta Gupta and G S Agarwal. Two-photon quantum interference in plasmonics: theory and applications. Opt. Lett., 39(2):390-393, 2014.Search in Google Scholar

[17] James S Fakonas, Hyunseok Lee, Yousif A Kelaita, and Harry A Atwater. Two-plasmon quantum interference. Nat. Photonics, 8(4):317-320, 2014.10.1038/nphoton.2014.40Search in Google Scholar

[18] Michael Steel. Quantum plasmonics: Two-plasmon interference. Nat. Photonics, 8(4):273-275, 2014.Search in Google Scholar

[19] G Di Martino, Y Sonnefraud, M S Tame, S Kéna-Cohen, F Dieleman, ∖cSK Özdemir, M S Kim, and S A Maier. Observation of quantum interference in the plasmonic Hong-Ou-Mandel effect. Phys. Rev. Appl., 1(3):34004, 2014.10.1103/PhysRevApplied.1.034004Search in Google Scholar

[20] Thomas W Ebbesen, H J Lezec, H F Ghaemi, Tineke Thio, and P A Wolff. Extraordinary optical transmission through subwavelength hole arrays. Nature, 391(6668):667-669, 1998.10.1038/35570Search in Google Scholar

[21] L Martin-Moreno, F J Garcia-Vidal, H J Lezec, K M Pellerin, T Thio, J B Pendry, and T W Ebbesen. Theory of extraordinary optical transmission through subwavelength hole arrays. Phys. Rev. Lett., 86(6):1114, 2001.10.1103/PhysRevLett.86.1114Search in Google Scholar PubMed

[22] E Altewischer, M P Van Exter, and J P Woerdman. Plasmonassisted transmission of entangled photons. Nature, 418(6895):304-306, 2002.10.1038/nature00869Search in Google Scholar PubMed

[23] Esteban Moreno, F J Garcia-Vidal, Daniel Erni, J Ignacio Cirac, and LMartín-Moreno. Theory of plasmon-assisted transmission of entangled photons. Phys. Rev. Lett., 92(23):236801, 2004.10.1103/PhysRevLett.92.236801Search in Google Scholar PubMed

[24] Sylvain Fasel, Franck Robin, Esteban Moreno, Daniel Erni, Nicolas Gisin, and Hugo Zbinden. Energy-time entanglement preservation in plasmon-assisted light transmission. Phys. Rev. Lett., 94(11):110501, 2005.10.1103/PhysRevLett.94.110501Search in Google Scholar PubMed

[25] Xi-Feng Ren, Guo-Ping Guo, Yun-Feng Huang, Chuan-Feng Li, and Guang-Can Guo. Plasmon-assisted transmission of highdimensional orbital angular-momentum entangled state. EPL (Europhysics Lett., 76(5):753, 2006.10.1209/epl/i2006-10359-2Search in Google Scholar

[26] L. Olislager, J. Cussey, A. T. Nguyen, P. Emplit, S. Massar, J.-M. Merolla, and K. Phan Huy. Frequency-bin entangled photons. Phys. Rev. A, 82(1):013804, July 2010.10.1103/PhysRevA.82.013804Search in Google Scholar

[27] Laurent Olislager, Ismaël Mbodji, Erik Woodhead, Johann Cussey, Luca Furfaro, Philippe Emplit, Serge Massar, Kien Phan Huy, and Jean-Marc Merolla. Implementing two-photon interference in the frequency domain with electro-optic phase modulators. New J. Phys., 14(4):43015, 2012.10.1088/1367-2630/14/4/043015Search in Google Scholar

[28] Laurent Olislager, Erik Woodhead, Kien Phan Huy, Jean-Marc Merolla, Philippe Emplit, and Serge Massar. Creating and manipulating entangled optical qubits in the frequency domain. Phys. Rev. A, 89(5):52323, 2014.10.1103/PhysRevA.89.052323Search in Google Scholar

[29] Simona Ungureanu, Branko Kolaric, Jianing Chen, Rainer Hillenbrand, and Renaud A L Vallée. Far-field disentanglement of modes in hybrid plasmonic-photonic crystals by fluorescence nano-reporters. Nanophotonics, 2(3):173-185, 2013. 10.1515/nanoph-2013-0004Search in Google Scholar

[30] Pierre Fauché, Simona Ungureanu, Branko Kolaric, and Renaud A L Vallée. Emitters as probes of a complex plasmo-photonics mode. J. Mater. Chem. C, 2014.10.1039/C4TC01787KSearch in Google Scholar

[31] Shigenori Fujikawa, Rie Takaki, and Toyoki Kunitake. Fabrication of arrays of sub-20-nm silicawalls via photolithography and solution-based molecular coating. Langmuir, 22(21):9057-61, October 2006.10.1021/la061830eSearch in Google Scholar PubMed

[32] Wakana Kubo and Shigenori Fujikawa. Embedding of a gold nanofin array in a polymer film to create transparent, flexible and anisotropic electrodes. J. Mater. Chem., 19(15):2154, March 2009.10.1039/b819290aSearch in Google Scholar

[33] Wakana Kubo and Shigenori Fujikawa. Au double nanopillars with nanogap for plasmonic sensor. Nano Lett., 11(1):8-15, January 2011.10.1021/nl100787bSearch in Google Scholar PubMed

[34] A. Taflove, A. Oskooi, and S. G. Johnson, editors. Advances in FDTD Computational Electrodynamics: Photonics and Nanotechnology. Artech House, Inc.„ 2013.Search in Google Scholar

[35] A D Rakic, A B Djurišic, J M Elazar, and M L Majewski. Optical Properties of Metallic Films for Vertical-Cavity Optoelectronic Devices. Appl. Opt., 37(22):5271-5283, August 1998. 10.1364/AO.37.005271Search in Google Scholar PubMed

Received: 2006-2-1
Accepted: 2015-5-2
Published Online: 2015-10-6
Published in Print: 2015-1-1

© 2015

This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.

Downloaded on 24.5.2024 from https://www.degruyter.com/document/doi/10.1515/nanoph-2015-0011/html
Scroll to top button