Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter September 10, 2019

Third upper molar enlargement in sigmodontine rodents (Cricetidae): morphological disparity and evolutionary convergence

  • Christophe Ronez EMAIL logo , Franck Barbière , Luciano De Santis and Ulyses F.J. Pardiñas
From the journal Mammalia

Abstract

We studied the enlargement of the upper third molar (M3), with respect to the upper second molar in sigmodontine rodents, the largest subfamily of living cricetids. M3 is enlarged in extant and extinct members of at least six tribes (Andinomyini, Euneomyini, Oryzomyini, Phyllotini, Reithrodontini and Sigmodontini), all of them also sharing hypsodonty, planate crowns and overall dental simplification in the context of Sigmodontinae. Enlargement is expressed in four ways, including simplification or modest complication of occlusal design on a single plane. M3 enlargement in sigmodontines is primarily associated with increasing herbivory rather than strictly with phylogeny, and thus presents a classic example of evolutionary convergence.

Acknowledgments

This contribution emerged from many years of consultation of collections and we are indebted for access or loans to the successive curators of several institutions, including, among others, the American Museum of Natural History (New York, NY, USA), the Museum of Vertebrate Zoology (Berkeley, CA, USA), the Colección de Mamíferos del Museu de Zoologia, Universidade Federal de Viçosa (Viçosa, Minas Gerais, Brazil) and the Instituto Nacional de Biodiversidad (Quito, Ecuador). R.A. Martin greatly improved the content and the English of this contribution, through various meticulous critical readings. D. Voglino kindly guided us in the design aspects of Figure 1 and P.E. Ortiz nicely provided us pictures of †Tafimys specimens. We thank one anonymous reviewer for the constructive comments made on this contribution and also A. Candela for valuable suggestions. Funds for this research were derived from Agencia (grant) PICT 2014-1039.

References

Barbière, F., L.E. Cruz, P.E. Ortiz and U.F.J. Pardiñas. 2016. A new genus of Sigmodontinae (Mammalia, Rodentia, Cricetidae) from the Pliocene of central Argentina. J. Vertebr. Paleontol. 36: 1–11.10.1080/02724634.2016.1199557Search in Google Scholar

Barbière, F., C. Ronez, P.E. Ortiz, R.A. Martin and U.F.J. Pardiñas. 2019. A new nomenclatural system for the study of sigmodontine rodent molars: first step towards an integrative phylogeny of fossil and living cricetids. Biol. J. Linn. Soc. 127: 224–244.10.1093/biolinnean/blz021Search in Google Scholar

Bradley, R., N. Ordóñez Garza and L. Bradley. 2017. Genus Neotoma. In: (D.E. Wilson, T.E. Lacher Jr. and R.A. Mittermeier, eds.) Handbook of the mammals of the world. Rodents II, Vol. 7. Lynx Edicions, Barcelona, Spain. pp. 356–362.Search in Google Scholar

Carleton, M.D. and G.G. Musser. 1984. Muroid rodents. In: (S. Anderson and J.K. Jones, eds.) Orders and families of recent mammals of the world. John Wiley & Sons, New York. pp. 289–379.Search in Google Scholar

Chaline, J., P. Brunet-Lecomte, S. Montuire, L. Viriot and F. Courant. 1999. Anatomy of the arvicoline radiation (Rodentia): palaeogeographical, palaeoecological history and evolutionary data. Ann. Zool. Fenn. 36: 239–267.Search in Google Scholar

Denys, C. and J. Michaux. 1992. La troisième molaire supérieure chez les Muridae d’Afrique tropicale et le cas des genres Acomys, Uranomys et Lophuromys. Bonn. zool. Beitr. 43: 367–382.Search in Google Scholar

Denys, C., J. Michaux and B. Hendey. 1987. An example of evolutionary parallelism? The Euryotomys-Otomys case in tropical Africa (Mammalia, Rodentia). C. R. Acad. Sci. Paris 305: 1389–1395.Search in Google Scholar

Ellerman, J.R. 1941. The families and genera of living rodents. Vol. 2. Muridae. British Museum (Natural History), London. pp. 690.Search in Google Scholar

Gomes Rodrigues, H., C. Charles, L. Marivaux, M. Vianey-Liaud and L. Viriot. 2011. Evolutionary and developmental dynamics of the dentition in Muroidea and Dipodoidea (Rodentia, Mammalia). Evol. Dev. 13: 361–369.10.1111/j.1525-142X.2011.00491.xSearch in Google Scholar PubMed

Hershkovitz, P. 1955. South American marsh rats, genus Holochilus, with a summary of sigmodont rodents. Fieldiana Zool. 37: 639–673.10.5962/bhl.title.2902Search in Google Scholar

Hershkovitz, P. 1962. Evolution of Neotropical cricetine rodents (Muridae) with special reference to the Phyllotine Group. Fieldiana Zool. 46: 1–524.10.5962/bhl.title.2781Search in Google Scholar

Kavanagh, K.D., A.R. Evans and J. Jernvall. 2007. Predicting evolutionary patterns of mammalian teeth from development. Nature 449: 427–433.10.1038/nature06153Search in Google Scholar PubMed

Koenigswald, W.V. 2011. Diversity of hypsodont teeth in mammalian dentitions – construction and classification. Palaeontographica Abt. A 294: 63–94.10.1127/pala/294/2011/63Search in Google Scholar

Labonne, G., R. Laffont, E. Renvoisé, A. Jebrane, C. Labruère, C. Chateau-Smith, N. Navarro and S. Montuire. 2012. When less means more: evolutionary and developmental hypotheses in rodent molars. J. Evol. Biol. 25: 2102–2111.10.1111/j.1420-9101.2012.02587.xSearch in Google Scholar PubMed

Lazzari, V., P. Tafforeau, J.P. Aguilar and J. Michaux. 2008. Topographic maps applied to comparative molar morphology: the case of murine and cricetine dental plans (Rodentia, Muroidea). Paleobiology 34: 46–64.10.1666/06052.1Search in Google Scholar

Lazzari, V., F. Guy, P.E. Salais, A. Euriat, C. Charles, L. Viriot, P. Tafforeau and J. Michaux. 2015. Convergent evolution of molar topography in Muroidea (Rodentia, Mammalia): connections between chewing movements and crown morphology. In: (P.G. Cox and L. Hautier, eds.) Evolution of the rodents – advances in phylogeny, functional morphology and development. Cambridge University Press, Cambridge. pp: 448–477.10.1017/CBO9781107360150.018Search in Google Scholar

Lindsay, E.H. 1972. Small mammal fossils from the Barstow Formation, California. Univ. Cal. Pub. Geol. Sci. 93: 1–104.Search in Google Scholar

Madden, R.H. 2015. Hypsodonty in mammal. evolution, geomorphology, and the role of earth surface processes. Cambridge University Press, Cambridge. pp. 423.Search in Google Scholar

Martin, R.A. 1979. Fossil history of the rodent genus Sigmodon. Evol Monographs 2: 1–36.Search in Google Scholar

Martin, S.A., B.H. Alhajeri and S.J. Steppan. 2016. Dietary adaptations in the teeth of murine rodents (Muridae): a test of biomechanical predictions. Biol. J. Linn. Soc. 119: 766–784.10.1111/bij.12822Search in Google Scholar

Mones, A. 1979. Los dientes de los vertebrados: una introducción a su estudio. Universidad de la Republica, Facultad de Humanidades y Ciencias, Montevideo. pp. 91.Search in Google Scholar

Pardiñas, U.F.J., P. Myers, L. León-Paniagua, N. Ordoñez Garza, J. Cook, B. Krystufek, R. Haslauer, R. Bradley, G. Shenbrot and J. Patton. 2017. Family Cricetidae. In: (D.E. Wilson, T.E. Lacher Jr. and R.A. Mittermeier, eds.) Handbook of the mammals of the world. Rodents II, Vol. 7. Lynx Edicions, Barcelona, Spain. pp: 156–535.Search in Google Scholar

Patton, J. 2017. Genus Sigmodon. In: (D.E. Wilson, T.E. Lacher Jr. and R.A. Mittermeier, eds.) Handbook of the mammals of the world. Rodents II, Vol. 7. Lynx Edicions, Barcelona, Spain. pp. 399–403.Search in Google Scholar

Pearson, O.P. 1983. Characteristics of a mammalian fauna from forests in Patagonia, Southern Argentina. J. Mammal. 64: 467–492.10.2307/1380360Search in Google Scholar

Pearson, O.P. 1988. Biology and feeding dynamics of a South American herbivorous rodent, Reithrodon. Stud. Neotrop. Fauna Environ. 23: 25–39.10.1080/01650528809360741Search in Google Scholar

Peterkova, R., H. Lesot and M. Peterka. 2006. Phylogenetic memory of developing mammalian dentition. J. Exp. Zool. Part B 306: 234–250.10.1002/jez.b.21093Search in Google Scholar PubMed

Petter, F. and O. Tostain. 1981. Variabilité de la 3ème molaire supérieure d’Holochilus brasiliensis (Rongeurs, Cricetidae). Mammalia 45: 257–259.Search in Google Scholar

Reig, O.A. 1977. A proposed unified nomenclature for the enameled components of the molar teeth of the Cricetidae (Rodentia). J. Zool. London 181: 227–241.10.1111/j.1469-7998.1977.tb03238.xSearch in Google Scholar

Renvoisé, E., A.R. Evans, A. Jebrane, C. Labruère, R. Laffont and S. Montuire. 2009. Evolution of mammal tooth patterns: new insights from a developmental prediction model. Evolution 63: 1327–1340.10.1111/j.1558-5646.2009.00639.xSearch in Google Scholar PubMed

Salazar-Bravo, J., U.F.J. Pardiñas, H., Zeballos and P. Teta. 2016. Description of a new tribe of sigmodontine rodents (Cricetidae: Sigmodontinae) with an updated summary of valid tribes and their generic contents. Occas. Pap. Tex. Tech. Univ. Mus. 338: 1–23.Search in Google Scholar

Schmidt-Kittler, N. 2006. Microdonty and macrodonty in herbivorous mammals. Palaeontographica Abt. A 278: 163–179.10.1127/pala/278/2006/163Search in Google Scholar

Self, C.J. 2015. Cricetid rodents: is molar root morphology an indicator of diet? Zoomorphology 134: 309–316.10.1007/s00435-015-0262-ySearch in Google Scholar

Sénégas, F. 2001. Interpretation of the dental pattern of the South African fossil Euryotomys (Rodentia, Murinae) and the origin of otomyine dental morphology. In: (C. Denys, L. Granjon and A. Poulet, eds.). African small mammals=Petits mammifères africains. IRD Éditions, Paris. pp. 151–160.Search in Google Scholar

Seo, H., J. Kim, J.J. Hwang, H.G. Jeong, S.S. Han, W. Park, K. Ryu, H. Seomun, J.Y. Kim, E.S. Cho, J.C. Park, K.S Hu, H.J. Kim, D.J. Kim and S.W. Cho. 2017. Regulation of root patterns in mammalian teeth. Sci. Rep. 7: 12714.10.1038/s41598-017-12745-1Search in Google Scholar PubMed PubMed Central

Shotwell, J.A. 1967. Pliocene mammals of southeast Oregon and adjacent Idaho. B. Am. Mus. Nat. Hist. 17: 1–103.Search in Google Scholar

Stehlin, H.G. and S. Schaub. 1951. Die Trigonodontie der Simplicidentaten. Nager. Schweizerischen Paläontologischen Abhandlungen 67: 1–385.Search in Google Scholar

Steppan, S.J. 1995. Revision of the tribe Phyllotini (Rodentia: Sigmodontinae), with a phylogenetic hypothesis for the Sigmodontinae. Fieldiana, Zool. 80: 1–112.Search in Google Scholar

Ungar, P.S. 2010. Mammal teeth: origin, evolution, and diversity. JHU Press, Baltimore. pp. 288.10.1353/book.485Search in Google Scholar

Van Valen, L. 1960. A functional index of hypsodonty. Evolution 14: 531–532.10.1111/j.1558-5646.1960.tb03121.xSearch in Google Scholar

Vorontsov, N.N. 1967. Evolution of the alimentary system in myomorph rodents [in Russian]. Nauka, Siberian Branch, Novosibirsk. pp. 346.Search in Google Scholar

Voss, R.S.1992. A revision of the South American species of Sigmodon (Mammalia: Muridae) with notes on their natural history and biogeography. Am. Mus. Novit. 3050: 1–56.Search in Google Scholar


Supplementary Material

The online version of this article offers supplementary material (https://doi.org/10.1515/mammalia-2019-0031).


Received: 2019-03-19
Accepted: 2019-08-20
Published Online: 2019-09-10
Published in Print: 2020-03-26

©2020 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 20.4.2024 from https://www.degruyter.com/document/doi/10.1515/mammalia-2019-0031/html
Scroll to top button