Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter July 4, 2022

A new generalized approach to study the existence of solutions of nonlinear fractional boundary value problems

  • Asmat Batool , Imran Talib , Rym Bourguiba , Iyad Suwan , Thabet Abdeljawad EMAIL logo and Muhammad Bilal Riaz

Abstract

In this paper, we construct a new generalized result to study the existence of solutions of nonlinear fractional boundary value problems (FBVPs). The proposed results unify the existence criteria of certain FBVPs including periodic and antiperiodic as special cases that have been previously studied separately in the literature. The method we employ is topological in its nature and manifests themselves in the forms of differential inequalities (lower and upper solutions, and coupled lower and upper solutions (CLUSs)). Two examples are given to demonstrate the applicability of the developed theoretical results.

MSC 2010: Primary 34A08; 45G15

Corresponding author: Thabet Abdeljawad, Department of Mathematics and General Sciences, Prince Sultan University, Riyadh, Saudi Arabia; and Department of Medical Research, China Medical University, 40402, Taichung, Taiwan, E-mail:

Acknowledgements

The authors would like to thank the anonymous referees and the handling editor for many useful comments and suggestions, leading to a substantial improvement of the presentation of this article.

  1. Author contribution: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

  2. Research funding: This work was supported by nonlinear Analysis group, Virtual University of Pakistan.

  3. Conflict of interest statement: The authors declare no conflicts of interest regarding this article.

References

[1] A. N. Gerasimov, “A generalization of linear laws of deformation and its application to problems of internal friction,” Akad. Nauk SSSR. Prikl. Mat. Meh, vol. 12, pp. 251–260, 1948.Search in Google Scholar

[2] G. S. Blair, “The role of psychophysics in rheology,” J. Colloid Sci., vol. 2, no. 1, pp. 21–32, 1947. https://doi.org/10.1016/0095-8522(47)90007-x.Search in Google Scholar

[3] F. Mainardi, “Fractional relaxation-oscillation and fractional diffusion-wave phenomena,” Chaos, Solit. Fractals, vol. 7, no. 9, pp. 1461–1477, 1996. https://doi.org/10.1016/0960-0779(95)00125-5.Search in Google Scholar

[4] L. Vázquez, “From Newton’s equation to fractional diffusion and wave equations,” Adv. Differ. Equ., vol. 2011, p. 169421, 2011. https://doi.org/10.1155/2011/169421.Search in Google Scholar

[5] A. A. Kilbas, H. M. Srivastava, and J. J. Trujillo, Theory and Applications of Fractional Differential Equations, The Netherlands, Elsevier, 2006.Search in Google Scholar

[6] K. Diethelm, The Analysis of Fractional Differential Equation, Germany, Springer, 2010.10.1007/978-3-642-14574-2Search in Google Scholar

[7] S. Das, Functional Fractional Calculus, Berlin, Springer, 2011.10.1007/978-3-642-20545-3Search in Google Scholar

[8] S. G. Samko, A. A. Kilbas, and O. I. Marichev, Fractional Integrals and Derivatives: Theory and Applications, Philadelphia, Gordon and Breach Science Publishers, 1993.Search in Google Scholar

[9] P. Bedi, A. Kumar, and A. Khan, “Controllability of neutral impulsive fractional differential equations with Atangana-Baleanu-Caputo derivatives,” Chaos, Solit. Fractals, vol. 150, p. 111153, 2021. https://doi.org/10.1016/j.chaos.2021.111153.Search in Google Scholar

[10] D. Baleanu, M. Jleli, S. Kumar, and B. Samet, “A fractional derivative with two singular kernels and application to a heat conduction problem,” Adv. Differ. Equ., vol. 2020, no. 1, pp. 1–19, 2020. https://doi.org/10.1186/s13662-020-02684-z.Search in Google Scholar

[11] S. Kumar, A. Kumar, S. Abbas, M. Al Qurashi, and D. Baleanu, “A modified analytical approach with existence and uniqueness for fractional Cauchy reaction-diffusion equations,” Adv. Differ. Equ., vol. 2020, no. 1, pp. 1–18, 2020. https://doi.org/10.1186/s13662-019-2488-3.Search in Google Scholar

[12] S. Kumar, S. Ghosh, B. Samet, and E. F. D. Goufo, “An analysis for heat equations arises in diffusion process using new Yang-Abdel-Aty-Cattani fractional operator,” Math. Methods Appl. Sci., vol. 43, no. 9, pp. 6062–6080, 2020. https://doi.org/10.1002/mma.6347.Search in Google Scholar

[13] N. A. Shah, E. R. El-Zahar, M. D. Aljoufi, and J. D. Chung, “An efficient approach for solution of fractional-order Helmholtz equations,” Adv. Differ. Equ., vol. 2021, no. 1, pp. 1–15, 2021. https://doi.org/10.1186/s13662-020-03167-x.Search in Google Scholar

[14] S. Kumar, R. Kumar, R. P. Agarwal, and B. Samet, “A study of fractional Lotka-Volterra population model using Hear wavelet and Adams-Bash forth-Moulton methods,” Math. Methods Appl. Sci., vol. 43, no. 8, pp. 5564–5578, 2020. https://doi.org/10.1002/mma.6297.Search in Google Scholar

[15] S. Kumar, R. Kumar, C. Cattani, and B. Samet, “Chaotic behaviour of fractional predator-prey dynamical system,” Chaos, Solit. Fractals, vol. 135, p. 109811, 2020. https://doi.org/10.1016/j.chaos.2020.109811.Search in Google Scholar

[16] B. Ghanbari, S. Kumar, and R. Kumar, “A study of behaviour for immune and tumor cells in immunogenetic tumour model with non-singular fractional derivative,” Chaos, Solit. Fractals, vol. 133, p. 109619, 2020. https://doi.org/10.1016/j.chaos.2020.109619.Search in Google Scholar

[17] S. Kumar, S. Ghosh, R. Kumar, and M. Jleli, “A fractional model for population dynamics of two interacting species by using spectral and Hermite wavelets methods,” Numer. Methods Part. Differ. Equ., vol. 37, no. 2, pp. 1652–1672, 2021. https://doi.org/10.1002/num.22602.Search in Google Scholar

[18] S. Kumar, R. Kumar, M. S. Osman, and B. Samet, “A wavelet based numerical scheme for fractional order SEIR epidemic of measles by using Genocchi polynomials,” Numer. Methods Part. Differ. Equ., vol. 37, no. 2, pp. 1250–1268, 2021. https://doi.org/10.1002/num.22577.Search in Google Scholar

[19] H. Jafari, H. Tajadodi, and R. M. Ganji, “A numerical approach for solving variable order differential equations based on Bernstein polynomials,” Comput. Math. Methods, vol. 1, no. 5, p. 1055, 2019. https://doi.org/10.1002/cmm4.1055.Search in Google Scholar

[20] H. Jafari and H. Tajadodi, “New method for solving a class of fractional partial differential equations with applications,” Therm. Sci., vol. 22, no. 1, pp. 277–286, 2018. https://doi.org/10.2298/tsci170707031j.Search in Google Scholar

[21] P. Veeresha, D. G. Prakasha, and S. Kumar, “A fractional model for propagation of classical optical solitons by using nonsingular derivative,” Math. Methods Appl. Sci., 2020. https://doi.org/10.1002/mma.6335.Search in Google Scholar

[22] S. Kumar, K. S. Nisar, R. Kumar, C. Cattani, and B. Samet, “A new Rabotnov fractional-exponential function-based fractional derivative for diffusion equation under external force,” Math. Methods Appl. Sci., vol. 43, no. 7, pp. 4460–4471, 2020. https://doi.org/10.1002/mma.6347.Search in Google Scholar

[23] H. Sun, D. Chen, Y. Zhang, and L. Chen, “Understanding partial bed-load transport: experiments and stochastic model analysis,” J. Hydrol., vol. 521, pp. 196–204, 2015. https://doi.org/10.1016/j.jhydrol.2014.11.064.Search in Google Scholar

[24] E. F. D. Goufo, S. Kumar, and S. B. Mugisha, “Similarities in a fifth-order evolution equation with and with no singular kernel,” Chaos, Solit. Fractals, vol. 130, p. 109467, 2020. https://doi.org/10.1016/j.chaos.2019.109467.Search in Google Scholar

[25] F. Özköse, M. T. Şenel, and R. Habbireeh, “Fractional-order mathematical modelling of cancer cells-cancer stem cells-immune system interaction with chemotherapy,” MMNSA, vol. 1, no. 2, pp. 67–83, 2021. https://doi.org/10.53391/mmnsa.2021.01.007.Search in Google Scholar

[26] C. De Coster and P. Habets, Two-Point Boundary Value Problems: Lower and Upper Solutions, The Netherlands, Elsevier, 2006.Search in Google Scholar

[27] M. Jia and X. Liu, “Multiplicity of solutions for integral boundary value problems of fractional differential equations with upper and lower solutions,” Appl. Math. Comput., vol. 232, pp. 313–323, 2014. https://doi.org/10.1016/j.amc.2014.01.073.Search in Google Scholar

[28] A. Cabada and L. López-Somoza, “Lower and upper solutions for even order boundary value problems,” Mathematics, vol. 7, no. 10, pp. 1–20, 2019. https://doi.org/10.3390/math7100878.Search in Google Scholar

[29] S. Zhang and X. Su, “The existence of a solution for a fractional differential equation with nonlinear boundary conditions considered using upper and lower solutions in reversed order,” Comput. Math. Appl., vol. 62, pp. 1269–1274, 2011. https://doi.org/10.1016/j.camwa.2011.03.008.Search in Google Scholar

[30] L. Lin, X. Liu, and H. Fang, “Method of lower and upper solutions for fractional differential equations,” Electron. J. Differ. Equ., vol. 2012, no. 100, pp. 1–13, 2012.Search in Google Scholar

[31] C. Chen, M. Bohner, and B. Jia, “Method of upper and lower solutions for nonlinear Caputo fractional difference equations and its applications,” Fract. Calc. Appl. Anal., vol. 22, no. 5, pp. 1307–1320, 2019. https://doi.org/10.1515/fca-2019-0069.Search in Google Scholar

[32] H. A. Wahash and S. K. Panchal, “Positive solutions for generalized Caputo fractional differential equations using lower and upper solutions method,” J. Frac. Calc. Nonlinear Sys., vol. 1, no. 1, pp. 1–12, 2020. https://doi.org/10.48185/jfcns.v1i1.78.Search in Google Scholar

[33] P. Bedi, A. Kumar, T. Abdeljawad, and A. Khan, “Existence of mild solutions for impulsive neutral Hilfer fractional evolution equations,” Adv. Differ. Equ., vol. 2020, p. 155, 2020. https://doi.org/10.1186/s13662-020-02615-y.Search in Google Scholar

[34] P. Bedi, A. Kumar, T. Abdeljawad, and A. Khan, “Study of Hilfer fractional evolution equations by the properties of controllability and stability,” Alex. Eng. J., vol. 60, no. 4, pp. 3741–3749, 2021. https://doi.org/10.1016/j.aej.2021.02.014.Search in Google Scholar

[35] P. Bedi, A. Kumar, T. Abdeljawad, Z. A. Khan, and A. Khan, “Existence and approximate controllability of Hilfer fractional evolution equations with almost sectorial operators,” Adv. Differ. Equ., vol. 2020, no. 1, pp. 1–15, 2020. https://doi.org/10.1186/s13662-020-03074-1.Search in Google Scholar

[36] A. Devi, A. Kumar, T. Abdeljawad, and A. Khan, “Stability analysis of solutions and existence theory of fractional Lagevin equation,” Alex. Eng. J., vol. 60, no. 4, pp. 3641–3647, 2021. https://doi.org/10.1016/j.aej.2021.02.011.Search in Google Scholar

[37] H. Afshari, H. Gholamyan, and C. Zhai, “New applications of concave operators to existence and uniqueness of solutions for fractional differential equations,” Math. Commun., vol. 25, pp. 157–169, 2020.Search in Google Scholar

[38] R. Luca, “Existence of solutions for a system of fractional boundary value problems,” Math. Commun., vol. 25, pp. 87–105, 2020.Search in Google Scholar

[39] M. Aubertin, T. Henneron, F. Piriou, P. Guerin, and J. C. Mipo, “Periodic and antiperiodic boundary conditions with the Lagrange multipliers in the FEM,” IEEE Trans. Magn., vol. 46, no. 8, pp. 3417–3420, 2010. https://doi.org/10.1109/tmag.2010.2046723.Search in Google Scholar

[40] S. Jacques, I. De Baere, and W. Van Paepegem, “Application of periodic boundary conditions on multiple part finite element meshes for the meso-scale homogenization of textile fabric composites,” Compos. Sci. Technol., vol. 92, pp. 41–54, 2014. https://doi.org/10.1016/j.compscitech.2013.11.023.Search in Google Scholar

[41] J. Shao, “Antiperiodic solutions for shunting inhibitory cellular neural networks with time-varying delays,” Phys. Lett., vol. 372, no. 30, pp. 5011–5016, 2008. https://doi.org/10.1016/j.physleta.2008.05.064.Search in Google Scholar

[42] M. A. Almalahi and S. K. Panchal, “Some existence and stability results for Ψ-Hilfer fractional implicit differential equation with periodic conditions: Ψ-Hilfer fractional implicit differential equation,” J. Math. Anal. Model, vol. 1, no. 1, pp. 1–19, 2020. https://doi.org/10.48185/jmam.v1i1.4.Search in Google Scholar

[43] M. Caputo, Elasticita e Dissipazione, Bologna, Italy, SIAM J. Numer. Anal., 1969.Search in Google Scholar

Received: 2021-08-28
Revised: 2022-04-30
Accepted: 2022-06-19
Published Online: 2022-07-04

© 2022 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 23.5.2024 from https://www.degruyter.com/document/doi/10.1515/ijnsns-2021-0338/html
Scroll to top button