Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter October 30, 2015

A Hierarchy of Lattice Soliton Equations Associated with a New Discrete Eigenvalue Problem and Darboux Transformations

  • Ning Zhang and Tiecheng Xia EMAIL logo

Abstract

By considering a new discrete isospectral eigenvalue problem, a hierarchy of integrable positive and negative lattice models is derived. It is shown that they correspond to positive and negative power expansions of Lax operators with respect to the spectral parameter, respectively. And the equation in the resulting hierarchy is integrable in Liouville sense. Further, a Darboux transformation is established for the typical equations by using gauge transformations of Lax pairs, from which the exact solutions are given.

MSC® (2010).: 17B80; 37K35; 37K40

Funding statement: Funding: This work was in part supported by the Natural Science Foundation of China (grant nos. 11271008 and 61072147).

References

[1] M. J. Ablowitz and J. F. Ladik, Nonlinear differential-deference equation, J. Math. Phys. 16 (1975), 598–603.10.1063/1.522558Search in Google Scholar

[2] T. Gui-Zhang, A trace identity and its applications to the theory of discrete integrable systems, J. Phys. A Math. Gen. 23 (1990), 3903–3922.10.1088/0305-4470/23/17/020Search in Google Scholar

[3] W. X. Ma and X. X. Xu, Positive and negative hierarchies of integrable lattice models associated with a Hamiltonian pair, Int. J. Theor. Phys. 43 (2004), 219–236.10.1023/B:IJTP.0000028860.27398.a1Search in Google Scholar

[4] W. X. Ma and X. X. Xu, A modified Toda spectral problem and its hierarchy of bi-Hamiltonian lattice, J. Phys. A Math. Gen. 37 (2004), 1323–1336.10.1088/0305-4470/37/4/018Search in Google Scholar

[5] X. Xi-Xiang and Z. Yu-Feng, A hierarchy of lax integrable lattice equations, Liouville integrability and a new integrable symplistic map, Commun. Theor. Phys. 41 (2004), 321–328.10.1088/0253-6102/41/3/321Search in Google Scholar

[6] Y. T. Wu and X. G. Geng, A new integrable symplectic map associated with lattice soliton equations, J. Math. Phys. 37 (1996), 2338–2345.10.1063/1.531512Search in Google Scholar

[7] C. W. Cao, X. G. Geng and Y. T. Wu, From the special 2+1 Toda lattice to the Kadomtsev-Petviashvili equation, J. Phys. A Math. Gen. 32 (1999), 8059–8078.10.1088/0305-4470/32/46/306Search in Google Scholar

[8] M. Ablowitz and R. Haberman, Nonlinear evolution equations two and three dimensions. Phys. Rev. Lett. 35. 18 (1975), 1185–1188.35Q99.10.1103/PhysRevLett.35.1185Search in Google Scholar

[9] G. Z. Tu, A combinatorial rule to Hirota’s bilinear equations. Nonlinear evolution equations and dynamical systems (Kolymbari, 1989), 170–172, Res. Rep. Phys., Springer, Berlin, (1990).10.1007/978-3-642-84039-5_33Search in Google Scholar

[10] W. X. Ma and X. X. Xu, Positive and negative hierarchies of integrable lattice models associated with a Hamiltonian pair. Internat. J. Theoret. Phys. 43 (2004), no.1, 219–235.10.1023/B:IJTP.0000028860.27398.a1Search in Google Scholar

[11] M. Blaszak and K. Marciniak, r-matrix approach to lattice integrable systems. J. Math. Phys. 35 (1994), 4661.10.1063/1.530807Search in Google Scholar

[12] Z. N. Zhu, Z. M. Zhu, X. N. Wu, and W. M. Xue, New matrix Lax representation for a Blaszak-Marciniak four-field lattice hierarchy and its infinitely many conservation laws. J. Phys. Soc. Jpn. 71 (2004), 1864.10.1143/JPSJ.71.1864Search in Google Scholar

[13] Y. B. Suris, Integrable discretizations for lattice system: local equations of motion and their Hamiltonian properties. Rev. Math. Phys. 11 (1999), 727.10.1142/S0129055X99000258Search in Google Scholar

[14] W. X. Ma and X. X. Xu, Y. F. Zhang, Semidirect sums of Lie algebras and discrete integrable couplings. J. Math. Phys. 47 (2006), no. 5, 053501, 16.10.1063/1.2194630Search in Google Scholar

[15] H. X. Yang, X. X. Xu and H. Y. Ding, A difference Hamiltonian operator and a hierarchy of generalized Toda lattice equations. Commun. Theor. Phys. 44 (2005), 1.10.1088/6102/44/1/1Search in Google Scholar

[16] H. X. Yang, X. X. Xu and H. Y. Ding, Two hierarchies of lattice soliton equations associated with a new discrete eigenvalue problem and Darboux transformation. Phys. Lett. A 338 (2005), 117.10.1016/j.physleta.2005.02.021Search in Google Scholar

[17] H. X. Yang, X. X. Xu and H. Y. Ding, New hierarchies of integrable positive and negative lattice models and Darboux transformation. Chaos Soliton Fract. 26 (2005), 1091.10.1016/j.chaos.2005.02.011Search in Google Scholar

[18] T. Xia and F. You, A generalized MKDV hierarchy, tri-Hamiltonian structure, higher-order binary constrained flows and its integrable couplings system, Chaos Soliton Fract. 28 (2006), 938–948.10.1016/j.chaos.2005.09.016Search in Google Scholar

[19] M. Ablowitz and P. Clarkson, Solitons, Nonlinear Evolutions and Inverse Scattering, London Mathematical Society Lecture Note Series, 149. Cambridge University Press, Cambridge, 1991. xii+516 pp. ISBN: 0-521-38730-2 (Reviewer: Walter Oevel) 35Qxx (35-02 35P25 58F07 81T13).Search in Google Scholar

[20] X. B. Hu and H. W. Tam, Application of Hirota’s bilinear formalism to a two-dimensional lattice by Leznov. Phys. Lett. A 276 (2000), 65.10.1016/S0375-9601(00)00650-2Search in Google Scholar

[21] M. Boiti, F. Pempinelli, A. Pogrebkov and B. Prinari, The Backlund and Darboux transformations for the time-dependent Schrodinger equation. (Russian) Tr. Mat. Inst. Steklova 226 (1999), Mat. Fiz. Probl. Kvantovoi Teor. Polya, 49–71; translation in Proc. Steklov Inst. Math. 1999, 3 (226), 42–62.Search in Google Scholar

[22] C. H. Gu and Z. X. Zhou, On the Darboux matrices of Backlund transformations for AKNS systems. Lett. Math. Phys. 12 (1987), 169.Search in Google Scholar

[23] V. Matveev and M. Salle, Darboux Transformation and Solitons, Springer, Berlin, 1991.10.1007/978-3-662-00922-2Search in Google Scholar

[24] W. Oevel, Symplectic Runge-Kutta schemes. Symmetries and integrability of difference equations. 299–310, London Math. Soc. Lecture Note Ser., 255, Cambridge Univ. Press, Cambridge, (1999).10.1017/CBO9780511569432.024Search in Google Scholar

[25] W. X. Ma, Darboux transformations for a Lax integrable system in 2n dimensions. Lett. Math. Phys. 39 (1997), 33.10.1007/s11005-997-3049-3Search in Google Scholar

[26] Y. T. Wu and X. G. Geng, A new hierarchy of integrable differential-difference equations and Darboux transformation. J. Phys. A Math. Gen. 31 (1998), L677.10.1088/0305-4470/31/38/004Search in Google Scholar

[27] J. Nimmo, Darboux transformation for discrete systems, Chaos Soliton Fract. 11 (2000), 115.10.1016/S0960-0779(98)00275-6Search in Google Scholar

[28] H. Y. Ding, X. X. Xu, A hierarchy of new discrete integrable equation and its Hamiltonian structure. Chin. Phys. 13 (2004), 125.10.1007/s11766-004-0021-1Search in Google Scholar

[29] V. B. Kuznetsov and E. K. Sklyanin, On Backlund transformations for many-body systems. J. Phys. A Math. Gen. 32 (1998), 2241.10.1088/0305-4470/31/9/012Search in Google Scholar

[30] V. B. Kuznetsov and E. K. Sklyanin, Backlund transformation for the BC-type Toda lattice. SIGMA. 3 (2007), 080.10.3842/SIGMA.2007.080Search in Google Scholar

[31] O. Ragnisco and F. Zullo, Backlund transformations for the trigonometric Gaudin magnet. SIGMA. 6 (2010), 012.10.3842/SIGMA.2010.012Search in Google Scholar

Received: 2014-11-12
Accepted: 2015-9-14
Published Online: 2015-10-30
Published in Print: 2015-12-1

©2015 by De Gruyter

Downloaded on 26.4.2024 from https://www.degruyter.com/document/doi/10.1515/ijnsns-2014-0119/html
Scroll to top button