Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter September 29, 2021

The antioxidant Rutin counteracts the pathological impact of α-synuclein on the enteric nervous system in vitro

  • Anne Christmann , Manuela Gries , Patrik Scholz , Pascal L. Stahr , Jessica Ka Yan Law , Steven Schulte , Monika Martin , Rainer Lilischkis , Sven Ingebrandt , Cornelia M. Keck and Karl-Herbert Schäfer ORCID logo EMAIL logo
From the journal Biological Chemistry

Abstract

Motoric disturbances in Parkinson’s disease (PD) derive from the loss of dopaminergic neurons in the substantia nigra. Intestinal dysfunctions often appear long before manifestation of neuronal symptoms, suggesting a strong correlation between gut and brain in PD. Oxidative stress is a key player in neurodegeneration causing neuronal cell death. Using natural antioxidative flavonoids like Rutin, might provide intervening strategies to improve PD pathogenesis. To explore the potential effects of micro (mRutin) compared to nano Rutin (nRutin) upon the brain and the gut during PD, its neuroprotective effects were assessed using an in vitro PD model. Our results demonstrated that Rutin inhibited the neurotoxicity induced by A53T α-synuclein (Syn) administration by decreasing oxidized lipids and increasing cell viability in both, mesencephalic and enteric cells. For enteric cells, neurite outgrowth, number of synaptic vesicles, and tyrosine hydroxylase positive cells were significantly reduced when treated with Syn. This could be reversed by the addition of Rutin. nRutin revealed a more pronounced result in all experiments. In conclusion, our study shows that Rutin, especially the nanocrystals, are promising natural compounds to protect neurons from cell death and oxidative stress during PD. Early intake of Rutin may provide a realizable option to prevent or slow PD pathogenesis.


Corresponding author: Karl-Herbert Schäfer, Department of Informatics and Microsystems and Technology, University of Applied Science Kaiserslautern, Working Group Enteric Nervous System, D-66482 Zweibrücken, Germany; and Department of Pediatric Surgery, Medical Faculty Mannheim, University of Heidelberg, D-68167 Mannheim, Germany, E-mail:
Anne Christmann and Manuela Gries contributed equally to this work.

Award Identifier / Grant number: 03FH019I3

Acknowledgments

The transfected SH-SY5Y-A53T and the SH-SY5Y-WT cells were a kind gift of Dr. T. Hasegawa provided by Dr. M. Britschgi at Roche. LUHMES cell line was kindly provided by Prof. Marcel Leist (University of Konstanz; Germany).

  1. Author contributions: Anne Christmann and Manuela Gries, designed and supervised the experiments, analyzed and interpreted results, and wrote the manuscript. Patrik Scholz produced the Rutin nanocrystals and helped with their characterization. Jessica Ka Yan Law and Sven Ingebrandt performed DPPH Assay and helped with SH-SY5Y cell culture. Sven Ingebrandt supervised Jessica Ka Yan Law. Steven Schulte helped to generate and analyze the immunohistochemical data and assisted with the ENS sample preparations. Monika Martin performed the Western blot and assisted with LUHMES cell culture and ELISA. Rainer Lilischkis generated the SEM images from Rutin nanocrystals and ENS cells. Cornelia M. Keck developed the Rutin nanocrystals, oversaw the pharmaceutical part of the study, and supervised Patrik Scholz. Karl-Herbert Schäfer conceived the project, was responsible for the overall experimental design, was involved in data analysis, interpretation and discussion, and the final manuscript. All authors discussed the results and commented on the manuscript.

  2. Research funding: None declared.

  3. Conflict of interest statement: The authors declare that they have no conflicts of interest with the contents of this article.

References

Afanas’Ev, I.B., Ostrachovich, E.A., and Korkina, L.G. (1998). Effect of rutin and its copper complex on superoxide formation and lipid peroxidation in rat liver microsomes. FEBS Lett. 425: 256–258.10.1016/S0014-5793(98)00244-0Search in Google Scholar

Al-Dhabi, N.A., Arasu, M.V., Park, C.H., and Park, S.U. (2015). An up-to-date review of rutin and its biological and pharmacological activities. EXCLI J. 14: 59–63, https://doi.org/10.17179/excli2014-663.Search in Google Scholar

Alam, Z.I., Jenner, A., Daniel, S.E., Lees, A.J., Cairns, N., Marsden, C.D., Jenner, P., and Halliwell, B. (1997). Oxidative DNA damage in the Parkinsonian brain: an apparent selective increase in 8-hydroxyguanine levels in substantia nigra. J. Neurochem. 69: 1196–1203, https://doi.org/10.1046/j.1471-4159.1997.69031196.x.Search in Google Scholar

Bishnoi, M., Chopra, K., and Kulkarni, S.K. (2007). Protective effect of rutin, a polyphenolic flavonoid against haloperidol-induced orofacial dyskinesia and associated behavioural, biochemical and neurochemical changes. Fundam. Clin. Pharmacol. 21: 521–529, https://doi.org/10.1111/j.1472-8206.2007.00512.x.Search in Google Scholar

Blesa, J., Trigo-Damas, I., Quiroga-Varela, A., and Jackson-Lewis, V.R. (2015). Oxidative stress and Parkinson’s disease. Front. Neuroanat. 9: 91, https://doi.org/10.3389/fnana.2015.00091.Search in Google Scholar

Bové, J., Prou, D., Perier, C., and Przedborski, S. (2005). Toxin-induced models of Parkinson’s disease. NeuroRx 2: 484–494, https://doi.org/10.1602/neurorx.2.3.484.Search in Google Scholar

Braak, H., De Vos, R.A.I., Bohl, J., and Del Tredici, K. (2006). Gastric α-synuclein immunoreactive inclusions in Meissner’s and Auerbach’s plexuses in cases staged for Parkinson’s disease-related brain pathology. Neurosci. Lett. 396: 67–72, https://doi.org/10.1016/j.neulet.2005.11.012.Search in Google Scholar

Burnashev, N. and Rozov, A. (2005). Presynaptic Ca2+ dynamics, Ca2+ buffers and synaptic efficacy. Cell Calcium 37: 489–495, https://doi.org/10.1016/j.ceca.2005.01.003.Search in Google Scholar

Cadet, J.L. and Brannock, C. (1997). Free radicals and the pathobiology of brain dopamine systems. Neurochem. Int. 32: 117–131, https://doi.org/10.1016/s0197-0186(97)00031-4.Search in Google Scholar

Carrasco-Pozo, C., Pastene, E., Vergara, C., Zapata, M., Sandoval, C., and Gotteland, M. (2012). Stimulation of cytosolic and mitochondrial calcium mobilization by indomethacin in Caco-2 cells: modulation by the polyphenols quercetin, resveratrol and rutin. Biochim. Biophys. Acta Gen. Subj. 1820: 2052–2061, https://doi.org/10.1016/j.bbagen.2012.09.015.Search in Google Scholar PubMed

Cersosimo, M.G., Raina, G.B., Pecci, C., Pellene, A., Calandra, C.R., Gutiérrez, C., Micheli, F.E., and Benarroch, E.E. (2013a). Gastrointestinal manifestations in Parkinson’s disease: prevalence and occurrence before motor symptoms. J. Neurol. 260: 1332–1338, https://doi.org/10.1007/s00415-012-6801-2.Search in Google Scholar PubMed

Cersosimo, M.G., Raina, G.B., Pecci, C., Pellene, A., Calandra, C.R., Gutiérrez, C., Micheli, F.E., and Benarroch, E.E. (2013b). Gastrointestinal manifestations in Parkinson’s disease: prevalence and occurrence before motor symptoms. J. Neurol., https://doi.org/10.1007/s00415-012-6801-2.Search in Google Scholar

Challis, C., Hori, A., Sampson, T.R., Yoo, B.B., Challis, R.C., Hamilton, A.M., Mazmanian, S.K., Volpicelli-Daley, L.A., and Gradinaru, V. (2020). Gut-seeded α-synuclein fibrils promote gut dysfunction and brain pathology specifically in aged mice. Nat. Neurosci. 23: 327–336, https://doi.org/10.1038/s41593-020-0589-7.Search in Google Scholar PubMed PubMed Central

Chen, H.Q., Jin, Z.Y., Wang, X.J., Xu, X.M., Deng, L., and Zhao, J.W. (2008). Luteolin protects dopaminergic neurons from inflammation-induced injury through inhibition of microglial activation. Neurosci. Lett. 448: 175–179, https://doi.org/10.1016/j.neulet.2008.10.046.Search in Google Scholar PubMed

Choi, M.G., Kim, M.J., Kim, D.G., Yu, R., Jang, Y.N., and Oh, W.J. (2018). Sequestration of synaptic proteins by alphasynuclein aggregates leading to neurotoxicity is inhibited by small peptide. PloS One 13: e0195339, https://doi.org/10.1371/journal.pone.0195339.Search in Google Scholar PubMed PubMed Central

Chua, L.S. (2013). A review on plant-based rutin extraction methods and its pharmacological activities. J. Ethnopharmacol. 150: 805–817, https://doi.org/10.1016/j.jep.2013.10.036.Search in Google Scholar PubMed

Ciulla, M., Marinelli, L., Cacciatore, I., and Di Stefano, A. (2019). Role of dietary supplements in the management of Parkinson’s disease. Biomolecules 9: 271, https://doi.org/10.3390/biom9070271.Search in Google Scholar PubMed PubMed Central

Conde, M.A., Alza, N.P., Iglesias González, P.A., Scodelaro Bilbao, P.G., Sánchez Campos, S., Uranga, R.M., and Salvador, G.A. (2018). Phospholipase D1 downregulation by α-synuclein: implications for neurodegeneration in Parkinson’s disease. Biochim. Biophys. Acta Mol. Cell Biol. Lipids 1863: 639–650, https://doi.org/10.1016/j.bbalip.2018.03.006.Search in Google Scholar PubMed

Crespy, V., Morand, C., Besson, C., Manach, C., Demigne, C., and Remesy, C. (2002). Quercetin, but not its glycosides, is absorbed from the rat stomach. J. Agric. Food Chem. 50: 618–621, https://doi.org/10.1021/jf010919h.Search in Google Scholar PubMed

Crotty, G.F., Ascherio, A., and Schwarzschild, M.A. (2017). Targeting urate to reduce oxidative stress in Parkinson disease. Exp. Neurol. 298: 210–224, https://doi.org/10.1016/j.expneurol.2017.06.017.Search in Google Scholar PubMed PubMed Central

Da Rocha Lapa, F., Soares, K.C., Rattmann, Y.D., Crestani, S., Missau, F.C., Pizzolatti, M.G., Marques, M.C.A., Rieck, L., and Santos, A.R.S. (2011). Vasorelaxant and hypotensive effects of the extract and the isolated flavonoid rutin obtained from Polygala paniculata L. J. Pharm. Pharmacol. 63: 875–881, https://doi.org/10.1111/j.2042-7158.2010.01240.x.Search in Google Scholar PubMed

Del Tredici, K., Rüb, U., De Vos, R.A.I., Bohl, J.R.E., and Braak, H. (2002a). Where does Parkinson disease pathology begin in the brain? J. Neuropathol. Exp. Neurol. 61: 413–426, https://doi.org/10.1093/jnen/61.5.413.Search in Google Scholar PubMed

Del Tredici, K., Rüb, U., De Vos, R.A.I., Bohl, J.R.E., and Braak, H. (2002b). Where does Parkinson disease pathology begin in the brain? J. Neuropathol. Exp. Neurol. 61: 413–426, https://doi.org/10.1093/jnen/61.5.413.Search in Google Scholar

Dextera, D.T. and Jenner, P. (2013). Parkinson disease: from pathology to molecular disease mechanisms. Free Radic. Biol. Med. 62: 132–144, https://doi.org/10.1016/j.freeradbiomed.2013.01.018.Search in Google Scholar PubMed

Dias, V., Junn, E., and Mouradian, M.M. (2013). The role of oxidative stress in Parkinson’s disease. J. Parkinsons Dis. 3: 461–491, https://doi.org/10.3233/jpd-130230.Search in Google Scholar

Enogieru, A.B., Haylett, W., Hiss, D.C., Bardien, S., and Ekpo, O.E. (2018). Rutin as a potent antioxidant: implications for neurodegenerative disorders. Oxid. Med. Cell. Longev. 2018: 6241017, https://doi.org/10.1155/2018/6241017.Search in Google Scholar PubMed PubMed Central

Finkel, T. and Holbrook, N.J. (2000). Oxidants, oxidative stress and the biology of ageing. Nature 408: 239–247, https://doi.org/10.1038/35041687.Search in Google Scholar PubMed

Fujino, G., Noguchi, T., Matsuzawa, A., Yamauchi, S., Saitoh, M., Takeda, K., and Ichijo, H. (2007). Thioredoxin and TRAF family proteins regulate reactive oxygen species-dependent activation of ASK1 through reciprocal modulation of the N-Terminal homophilic interaction of ASK1. Mol. Cell Biol. 27: 8152–8163, https://doi.org/10.1128/mcb.00227-07.Search in Google Scholar PubMed PubMed Central

Furness, J.B., Callaghan, B.P., Rivera, L.R., and Cho, H.J. (2014). The enteric nervous system and gastrointestinal innervation: integrated local and central control. Adv. Exp. Med. Biol. 817: 39–71, https://doi.org/10.1007/978-1-4939-0897-4_3.Search in Google Scholar PubMed

Ganeshpurkar, A. and Saluja, A.K. (2017). The pharmacological potential of rutin. Saudi Pharmaceut. J. 25: 149–164, https://doi.org/10.1016/j.jsps.2016.04.025.Search in Google Scholar PubMed PubMed Central

Gaugler, M.N., Genc, O., Bobela, W., Mohanna, S., Ardah, M.T., El-Agnaf, O.M., Cantoni, M., Bensadoun, J.C., Schneggenburger, R., Knott, G.W., et al.. (2012). Nigrostriatal overabundance of α-synuclein leads to decreased vesicle density and deficits in dopamine release that correlate with reduced motor activity. Acta Neuropathol. 123: 653–669, https://doi.org/10.1007/s00401-012-0963-y.Search in Google Scholar PubMed

Gibbons, C.H. (2019). Basics of autonomic nervous system function. In: Handbook of clinical neurology. Elsevier B.V., Amsterdam, Netherlands, pp. 407–418.10.1016/B978-0-444-64032-1.00027-8Search in Google Scholar PubMed

Gries, M., Christmann, A., Schulte, S., Weyland, M., Rommel, S., Martin, M., Baller, M., Röth, R., Schmitteckert, S., Unger, M., et al.. (2021). Parkinson mice show functional and molecular changes in the gut long before motoric disease onset. Mol. Neurodegener. 16: 34, https://doi.org/10.1186/s13024-021-00439-2.Search in Google Scholar PubMed PubMed Central

Grundmann, D., Klotz, M., Rabe, H., Glanemann, M., and Schäfer, K.H. (2015). Isolation of high-purity myenteric plexus from adult human and mouse gastrointestinal tract. Sci. Rep. 5: 9226, https://doi.org/10.1038/srep09226.Search in Google Scholar PubMed PubMed Central

Gustafsson, G., Lööv, C., Persson, E., Lázaro, D.F., Takeda, S., Bergström, J., Erlandsson, A., Sehlin, D., Balaj, L., György, B., et al.. (2018). Secretion and uptake of α-synuclein via extracellular vesicles in cultured cells. Cell. Mol. Neurobiol. 38: 1539–1550, https://doi.org/10.1007/s10571-018-0622-5.Search in Google Scholar PubMed PubMed Central

Haberman, A., Williamson, W.R., Epstein, D., Wang, D., Rina, S., Meinertzhagen, I.A., and Hiesinger, P.R. (2012). The synaptic vesicle SNARE neuronal synaptobrevin promotes endolysosomal degradation and prevents neurodegeneration. J. Cell Biol. 196: 261–276, https://doi.org/10.1083/jcb.201108088.Search in Google Scholar PubMed PubMed Central

Hansen, C., Angot, E., Bergström, A.L., Steiner, J.A., Pieri, L., Paul, G., Outeiro, T.F., Melki, R., Kallunki, P., Fog, K., et al.. (2011). α-Synuclein propagates from mouse brain to grafted dopaminergic neurons and seeds aggregation in cultured human cells. J. Clin. Invest. 121: 715–725, https://doi.org/10.1172/jci43366.Search in Google Scholar

Hasegawa, T., Matsuzaki, M., Takeda, A., Kikuchi, A., Akita, H., Perry, G., Smith, M.A., and Itoyama, Y. (2004a). Accelerated α-synuclein aggregation after differentiation of SH-SY5Y neuroblastoma cells. Brain Res. 1013: 51–59, https://doi.org/10.1016/j.brainres.2004.04.018.Search in Google Scholar PubMed

Hasegawa, T., Matsuzaki, M., Takeda, A., Kikuchi, A., Akita, H., Perry, G., Smith, M.A., and Itoyama, Y. (2004b). Accelerated α-synuclein aggregation after differentiation of SH-SY5Y neuroblastoma cells. Brain Res. 1013: 51–59, https://doi.org/10.1016/j.brainres.2004.04.018.Search in Google Scholar

Hernandez, D.G., Reed, X., and Singleton, A.B. (2016). Genetics in Parkinson disease: Mendelian versus non-Mendelian inheritance. J. Neurochem. 139: 59–74, https://doi.org/10.1111/jnc.13593.Search in Google Scholar PubMed PubMed Central

Hilfiker, S., Pieribone, V.A., Czernik, A.J., Kao, H.T., Augustine, G.J., and Greengard, P. (1999). Synapsins as regulators of neurotransmitter release. Philos. Trans. R. Soc. B Biol. Sci. 354: 269–279, doi:https://doi.org/10.1098/rstb.1999.0378.Search in Google Scholar

Hirsch, E.C., Breidert, T., Rousselet, E., Hunot, S., Hartmann, A., and Michel, P.P. (2003). The role of glial reaction and inflammation in Parkinson’s disease. Ann. N. Y. Acad. Sci. 991: 214–228, doi:https://doi.org/10.1111/j.1749-6632.2003.tb07478.x.Search in Google Scholar

Hirsch, E.C. and Hunot, S. (2009). Neuroinflammation in Parkinson’s disease: a target for neuroprotection?. Lancet Neurol. 8: 382–397, https://doi.org/10.1016/s1474-4422(09)70062-6.Search in Google Scholar

Holmqvist, S., Chutna, O., Bousset, L., Aldrin-Kirk, P., Li, W., Björklund, T., Wang, Z.Y., Roybon, L., Melki, R., and Li, J.Y. (2014). Direct evidence of Parkinson pathology spread from the gastrointestinal tract to the brain in rats. Acta Neuropathol. 128: 805–820, https://doi.org/10.1007/s00401-014-1343-6.Search in Google Scholar

Hu, Q. and Wang, G. (2016). Mitochondrial dysfunction in Parkinson’s disease. Transl. Neurodegener. 5: 216–231, https://doi.org/10.1186/s40035-016-0060-6.Search in Google Scholar

Iacopino, A.M. and Christakos, S. (1990). Specific reduction of calcium-binding protein (28-kilodalton calbindin-D) gene expression in aging and neurodegenerative diseases. Proc. Natl. Acad. Sci. U.S.A. 87: 4078–4082, https://doi.org/10.1073/pnas.87.11.4078.Search in Google Scholar

Ihara, Y., Chuda, D., Kuroda, S., and Hayabara, T. (1999). Hydroxyl radical and superoxide dismutase in blood of patients with Parkinson’s disease: relationship to clinical data. J. Neurol. Sci. 170: 90–95, https://doi.org/10.1016/s0022-510x(99)00192-6.Search in Google Scholar

Islam, F., Khan, M.M., Raza, S.S., Javed, H., Ahmad, A., Khan, A., Islam, F., and Safhi, M.M. (2012). Rutin protects dopaminergic neurons from oxidative stress in an animal model of Parkinson’s disease. Neurotox. Res. 22: 1–15, https://doi.org/10.1007/s12640-011-9295-2.Search in Google Scholar PubMed

Javed, H., Khan, M.M., Ahmad, A., Vaibhav, K., Ahmad, M.E., Khan, A., Ashafaq, M., Islam, F., Siddiqui, M.S., Safhi, M.M., et al.. (2012). Rutin prevents cognitive impairments by ameliorating oxidative stress and neuroinflammation in rat model of sporadic dementia of Alzheimer type. Neuroscience 210: 340–352, https://doi.org/10.1016/j.neuroscience.2012.02.046.Search in Google Scholar PubMed

Jenner, P., Dexter, D.T., Sian, J., Schapira, A.H.V., and Marsden, C.D. (1992). Oxidative stress as a cause of nigral cell death in Parkinson’s disease and incidental lewy body disease. Ann. Neurol. 32: S82–S87, https://doi.org/10.1002/ana.410320714.Search in Google Scholar PubMed

Jenner, P., Hunot, O., Beal, K., and Tatton, S. (2003). Oxidative stress in Parkinson’s disease. Ann. Neurol. 53: 26–36, https://doi.org/10.1002/ana.10483.Search in Google Scholar PubMed

Joglar, B., Rodriguez-Pallares, J., Rodriguez-Perez, A.I., Rey, P., Guerra, M.J., and Labandeira-Garcia, J.L. (2009). The inflammatory response in the MPTP model of Parkinson’s disease is mediated by brain angiotensin: relevance to progression of the disease. J. Neurochem. 109: 656–669, https://doi.org/10.1111/j.1471-4159.2009.05999.x.Search in Google Scholar PubMed

Kandemir, F.M., Ozkaraca, M., Yildirim, B.A., Hanedan, B., Kirbas, A., Kilic, K., Aktas, E., and Benzer, F. (2015). Rutin attenuates gentamicin-induced renal damage by reducing oxidative stress, inflammation, apoptosis, and autophagy in rats. Ren. Fail. 37: 518–525, https://doi.org/10.3109/0886022x.2015.1006100.Search in Google Scholar PubMed

Kim, S., Kwon, S.H., Kam, T.I., Panicker, N., Karuppagounder, S.S., Lee, S., Lee, J.H., Kim, W.R., Kook, M., Foss, C.A., et al.. (2019). Transneuronal propagation of pathologic α-synuclein from the gut to the brain models Parkinson’s disease. Neuron 103: 627–641.e7, https://doi.org/10.1016/j.neuron.2019.05.035.Search in Google Scholar PubMed PubMed Central

Konno, T., Ross, O.A., Puschmann, A., Dickson, D.W., and Wszolek, Z.K. (2016). Autosomal dominant Parkinson’s disease caused by SNCA duplications. Park. Relat. Disord. 22: S1–S6, https://doi.org/10.1016/j.parkreldis.2015.09.007.Search in Google Scholar PubMed PubMed Central

Kordower, J.H., Chu, Y., Hauser, R.A., Freeman, T.B., and Olanow, C.W. (2008). Lewy body-like pathology in long-term embryonic nigral transplants in Parkinson’s disease. Nat. Med. 14: 504–506, https://doi.org/10.1038/nm1747.Search in Google Scholar PubMed

Lange, K.W. (1998). Clinical pharmacology of dopamine agonists in Parkinson’s disease. Drugs Aging 13: 381–389, https://doi.org/10.2165/00002512-199813050-00004.Search in Google Scholar PubMed

Lapa, G.B. (2011). Molecular-biological problems of drug design and mechanism of drug action - triple inhibitors of monoamine reuptake transporters: first results and outlook. Pharm. Chem. J. 45: 323–328, https://doi.org/10.1007/s11094-011-0626-7.Search in Google Scholar

Lebouvier, T., Chaumette, T., Damier, P., Coron, E., Touchefeu, Y., Vrignaud, S., Naveilhan, P., Galmiche, J.P., Bruley Des Varannes, S., Derkinderen, P., et al.. (2008). Pathological lesions in colonic biopsies during Parkinson’s disease. Gut 57: 1741–1743, https://doi.org/10.1136/gut.2008.162503.Search in Google Scholar PubMed

Li, J., Uversky, V.N., and Fink, A.L. (2001). Effect of familial Parkinson’s disease point mutations A30P and A53T on the structural properties, aggregation, and fibrillation of human α-synuclein. Biochemistry 40: 11604–11613, https://doi.org/10.1021/bi010616g.Search in Google Scholar PubMed

Li, Y., Hu, X., Liu, Y., Bao, Y., and An, L. (2009). Nimodipine protects dopaminergic neurons against inflammation-mediated degeneration through inhibition of microglial activation. Neuropharmacology 56: 580–589, https://doi.org/10.1016/j.neuropharm.2008.10.016.Search in Google Scholar

Liochev, S.I. and Fridovich, I. (1994). The role of O2.- in the production of HO.: in vitro and in vivo. Free Radic. Biol. Med. 16: 29–33, https://doi.org/10.1016/0891-5849(94)90239-9.Search in Google Scholar

Liu, Y., Zhou, Q., Xie, X., Lin, D., and Dong, L. (2010). Oxidative stress and DNA damage in the earthworm eisenia fetida induced by toluene, ethylbenzene and xylene. Ecotoxicology 19: 1551–1559, https://doi.org/10.1007/s10646-010-0540-x.Search in Google Scholar PubMed

Liu, Z., Yu, Y., Li, X., Ross, C.A., and Smith, W.W. (2011). Curcumin protects against A53T alpha-synuclein-induced toxicity in a PC12 inducible cell model for Parkinsonism. Pharmacol. Res. 63: 439–444, https://doi.org/10.1016/j.phrs.2011.01.004.Search in Google Scholar PubMed

Lu, J., Sun, F., Ma, H., Qing, H., and Deng, Y. (2015). Comparison between α-synuclein wild-type and A53T mutation in a progressive Parkinson’s disease model. Biochem. Biophys. Res. Commun. 464: 988–993, https://doi.org/10.1016/j.bbrc.2015.07.007.Search in Google Scholar PubMed

Magalingam, K.B., Radhakrishnan, A., and Haleagrahara, N. (2013). Rutin, a bioflavonoid antioxidant protects rat pheochromocytoma (PC-12) cells against 6-hydroxydopamine (6-OHDA)-induced neurotoxicity. Int. J. Mol. Med. 32: 235–240, https://doi.org/10.3892/ijmm.2013.1375.Search in Google Scholar PubMed

Manoharan, S., Guillemin, G.J., Abiramasundari, R.S., Essa, M.M., Akbar, M., and Akbar, M.D. (2016). The role of reactive oxygen species in the pathogenesis of Alzheimer’s disease, Parkinson’s disease, and huntington’s disease: a mini review. Oxid. Med. Cell. Longev. 2016: 8590578, https://doi.org/10.1155/2016/8590578.Search in Google Scholar PubMed PubMed Central

Matsuzaki, M., Hasegawa, T., Takeda, A., Kikuchi, A., Furukawa, K., Kato, Y., and Itoyama, Y. (2004a). Histochemical features of stress-induced aggregates in α-synuclein overexpressing cells. Brain Res. 1004: 83–90, https://doi.org/10.1016/j.brainres.2004.01.017.Search in Google Scholar PubMed

Matsuzaki, M., Hasegawa, T., Takeda, A., Kikuchi, A., Furukawa, K., Kato, Y., and Itoyama, Y. (2004b). Histochemical features of stress-induced aggregates in α-synuclein overexpressing cells. Brain Res. 1004: 83–90, https://doi.org/10.1016/j.brainres.2004.01.017.Search in Google Scholar

Mauludin, R., Müller, R.H., and Keck, C.M. (2009). Kinetic solubility and dissolution velocity of rutin nanocrystals. Eur. J. Pharmaceut. Sci. 36: 502–510, https://doi.org/10.1016/j.ejps.2008.12.002.Search in Google Scholar PubMed

Myhre, O., Andersen, J.M., Aarnes, H., and Fonnum, F. (2003). Evaluation of the probes 2′,7′-dichlorofluorescin diacetate, luminol, and lucigenin as indicators of reactive species formation. Biochem. Pharmacol. 65: 1575–1582, https://doi.org/10.1016/s0006-2952(03)00083-2.Search in Google Scholar

Nemani, V.M., Lu, W., Berge, V., Nakamura, K., Onoa, B., Lee, M.K., Chaudhry, F.A., Nicoll, R.A., and Edwards, R.H. (2010a). Increased expression of α-synuclein reduces neurotransmitter release by inhibiting synaptic vesicle reclustering after endocytosis. Neuron 65: 66–79, https://doi.org/10.1016/j.neuron.2009.12.023.Search in Google Scholar

Nemani, V.M., Lu, W., Berge, V., Nakamura, K., Onoa, B., Lee, M.K., Chaudhry, F.A., Nicoll, R.A., and Edwards, R.H. (2010b). Increased expression of α-synuclein reduces neurotransmitter release by inhibiting synaptic vesicle reclustering after endocytosis. Neuron 65: 66–79, https://doi.org/10.1016/j.neuron.2009.12.023.Search in Google Scholar

Nones, J., Costa, A.P., Leal, R.B., Gomes, F.C.A., and Trentin, A.G. (2012). The flavonoids hesperidin and rutin promote neural crest cell survival. Cell Tissue Res. 350: 305–315, https://doi.org/10.1007/s00441-012-1472-y.Search in Google Scholar

Pan-Montojo, F., Anichtchik, O., Dening, Y., Knels, L., Pursche, S., Jung, R., Jackson, S., Gille, G., Spillantini, M.G., Reichmann, H., et al.. (2010). Progression of Parkinson’s disease pathology is reproduced by intragastric administration of rotenone in mice. PloS One 5: e8762, https://doi.org/10.1371/journal.pone.0008762.Search in Google Scholar

Pandey, P., Rahman, M., Bhatt, P.C., Beg, S., Paul, B., Hafeez, A., Al-Abbasi, F.A., Nadeem, M.S., Baothman, O., Anwar, F., et al.. (2018). Implication of nano-antioxidant therapy for treatment of hepatocellular carcinoma using PLGA nanoparticles of rutin. Nanomedicine 13: 849–870, https://doi.org/10.2217/nnm-2017-0306.Search in Google Scholar

Parker, W.D., Parks, J.K., and Swerdlow, R.H. (2008). Complex I deficiency in Parkinson’s disease frontal cortex. Brain Res. 1189: 215–218, https://doi.org/10.1016/j.brainres.2007.10.061.Search in Google Scholar

Poewe, W., Seppi, K., Tanner, C.M., Halliday, G.M., Brundin, P., Volkmann, J., Schrag, A.E., and Lang, A.E. (2017). Parkinson disease. Nat. Rev. Dis. Primers 3: 1–21, https://doi.org/10.1038/nrdp.2017.13.Search in Google Scholar

Postuma, R.B., Berg, D., Stern, M., Poewe, W., Olanow, C.W., Oertel, W., Obeso, J., Marek, K., Litvan, I., Lang, A.E., et al.. (2015). MDS clinical diagnostic criteria for Parkinson’s disease. Mov. Disord. 30: 1591–1601, https://doi.org/10.1002/mds.26424.Search in Google Scholar

Pyrzanowska, J., Piechal, A., Blecharz-Klin, K., Joniec-Maciejak, I., Zobel, A., and Widy-Tyszkiewicz, E. (2012). Influence of long-term administration of rutin on spatial memory as well as the concentration of brain neurotransmitters in aged rats. Pharmacol. Rep. 64: 808–816, https://doi.org/10.1016/s1734-1140(12)70876-9.Search in Google Scholar

Rahman, M., Zaki Ahmad, M., Kazmi, I., Akhter, S., Afzal, M., Gupta, G., and Ranjan Sinha, V. (2014). Emergence of nanomedicine as cancer targeted magic bullets: recent development and need to address the toxicity apprehension. Curr. Drug Discov. Technol. 9: 319–329, https://doi.org/10.2174/157016312803305898.Search in Google Scholar PubMed

Raja, S.A., Abbas, S., Shah, S.T.A., Tariq, A., Bibi, N., Yousuf, A., Khawaja, A., Nawaz, M., Mehmood, A., Khan, M.J., et al.. (2019). Increased expression levels of syntaxin 1a and synaptobrevin 2/vesicle-associated membrane protein-2 are associated with the progression of bladder cancer. Genet. Mol. Biol. 42: 40–47, https://doi.org/10.1590/1678-4685-gmb-2017-0339.Search in Google Scholar PubMed PubMed Central

RajaSankar, S., Manivasagam, T., and Surendran, S. (2009). Ashwagandha leaf extract: a potential agent in treating oxidative damage and physiological abnormalities seen in a mouse model of Parkinson’s disease. Neurosci. Lett. 454: 11–15, https://doi.org/10.1016/j.neulet.2009.02.044.Search in Google Scholar PubMed

Rego, A.C. and Oliveira, C.R. (2003). Mitochondrial dysfunction and reactive oxygen species in excitotoxicity and apoptosis: implications for the pathogenesis of neurodegenerative diseases. Neurochem. Res. 28: 1563–1567, https://doi.org/10.1023/a:1025682611389.10.1023/A:1025682611389Search in Google Scholar

Rosborough, K., Patel, N., and Kalia, L.V. (2017). α-Synuclein and Parkinsonism: updates and future perspectives. Curr. Neurol. Neurosci. Rep. 17: 31, https://doi.org/10.1007/s11910-017-0737-y.Search in Google Scholar PubMed

Rota, C., Fann, Y.C., and Mason, R.P. (1999). Phenoxyl free radical formation during the oxidation of the fluorescent dye 2’,7’-dichlorofluorescein by horseradish peroxidase. Possible consequences for oxidative stress measurements. J. Biol. Chem. 274: 28161–28168, https://doi.org/10.1074/jbc.274.40.28161.Search in Google Scholar PubMed

Sánchez-Iglesias, S., Méndez-Álvarez, E., Iglesias-González, J., Muñoz-Patiño, A., Sánchez-Sellero, I., Labandeira-García, J.L., and Soto-Otero, R. (2009). Brain oxidative stress and selective behaviour of aluminium in specific areas of rat brain: potential effects in a 6-OHDA-induced model of Parkinson’s disease. J. Neurochem. 109: 879–888, https://doi.org/10.1111/j.1471-4159.2009.06019.x.Search in Google Scholar PubMed

Schapira, A.H. and Jenner, P. (2011). Etiology and pathogenesis of Parkinson’s disease. Mov. Disord. 26: 1049–1055, https://doi.org/10.1002/mds.23732.Search in Google Scholar PubMed

Schildknecht, S., Pöltl, D., Nagel, D.M., Matt, F., Scholz, D., Lotharius, J., Schmieg, N., Salvo-Vargas, A., and Leist, M. (2009). Requirement of a dopaminergic neuronal phenotype for toxicity of low concentrations of 1-methyl-4-phenylpyridinium to human cells. Toxicol. Appl. Pharmacol. 241: 23–35, https://doi.org/10.1016/j.taap.2009.07.027.Search in Google Scholar PubMed

Scholz, D., Pöltl, D., Genewsky, A., Weng, M., Waldmann, T., Schildknecht, S., and Leist, M. (2011). Rapid, complete and large-scale generation of post-mitotic neurons from the human LUHMES cell line. J. Neurochem. 119: 957–971, https://doi.org/10.1111/j.1471-4159.2011.07255.x.Search in Google Scholar PubMed

Scholz, P. and Keck, C.M. (2015). Flavonoid nanocrystals produced by ARTcrystal®-technology. Int. J. Pharm. 482: 27–37, https://doi.org/10.1016/j.ijpharm.2014.11.008.Search in Google Scholar PubMed

Scott, D.A., Tabarean, I., Tang, Y., Cartier, A., Masliah, E., and Roy, S. (2010a). A pathologic cascade leading to synaptic dysfunction in α-synuclein-induced neurodegeneration. J. Neurosci. 30: 8083–8095, https://doi.org/10.1523/jneurosci.1091-10.2010.Search in Google Scholar

Scott, D.A., Tabarean, I., Tang, Y., Cartier, A., Masliah, E., and Roy, S. (2010b). A pathologic cascade leading to synaptic dysfunction in α-synuclein-induced neurodegeneration. J. Neurosci. 30: 8083–8095, https://doi.org/10.1523/jneurosci.1091-10.2010.Search in Google Scholar

Seo, J.H., Ahn, Y., Lee, S.R., Yeo, C.Y., and Hur, K.C. (2005). The major target of the endogenously generated reactive oxygen species in response to insulin stimulation is Phosphatase and Tensin homolog and not phosphoinositide-3 kinase (PI-3 kinase) in the PI-3 kinase/Akt pathway. Mol. Biol. Cell 16: 348–357, https://doi.org/10.1091/mbc.e04-05-0369.Search in Google Scholar PubMed PubMed Central

Shimohama, S. and Hisahara, S. (2011). Toxin-induced and genetic animal models of Parkinson’s disease. Parkinsons Dis. 2011: 951709, https://doi.org/10.4061/2011/951709.Search in Google Scholar PubMed PubMed Central

Sies, H., Berndt, C., and Jones, D.P. (2017). Oxidative stress. Annu. Rev. Biochem. 86: 715–748, https://doi.org/10.1146/annurev-biochem-061516-045037.Search in Google Scholar PubMed

Singh, S. and Dikshit, M. (2007). Apoptotic neuronal death in Parkinson’s disease: involvement of nitric oxide. Brain Res. Rev. 54: 233–250, https://doi.org/10.1016/j.brainresrev.2007.02.001.Search in Google Scholar PubMed

Song, K., Na, J.Y., Kim, S., and Kwon, J. (2015). Rutin upregulates neurotrophic factors resulting in attenuation of ethanol-induced oxidative stress in HT22 hippocampal neuronal cells. J. Sci. Food Agric. 95: 2117–2123, https://doi.org/10.1002/jsfa.6927.Search in Google Scholar PubMed

Soukup, S., Vanhauwaert, R., and Verstreken, P. (2018). Parkinson’s disease: convergence on synaptic homeostasis. EMBO J. 37: e98960, https://doi.org/10.15252/embj.201898960.Search in Google Scholar PubMed PubMed Central

Spillantini, M.G., Schmidt, M.L., Lee, V.M.Y., Trojanowski, J.Q., Jakes, R., and Goedert, M. (1997). α-synuclein in Lewy bodies. Nature 388: 839–840, doi:https://doi.org/10.1038/42166.Search in Google Scholar PubMed

Stahr, P.L. and Keck, C.M. (2019). Preservation of rutin nanosuspensions without the use of preservatives. Beilstein J. Nanotechnol. 10: 1902–1913, https://doi.org/10.3762/bjnano.10.185.Search in Google Scholar PubMed PubMed Central

Subramaniam, S.R. and Chesselet, M.F. (2013). Mitochondrial dysfunction and oxidative stress in Parkinson’s disease. Prog. Neurobiol. 106–107: 17–32, https://doi.org/10.1016/j.pneurobio.2013.04.004.Search in Google Scholar PubMed PubMed Central

Sun, X.Y., Li, L.J., Dong, Q.X., Zhu, J., Huang, Y.R., Hou, S.J., Yu, X.L., and Liu, R.T. (2021). Rutin prevents tau pathology and neuroinflammation in a mouse model of Alzheimer’s disease. J. Neuroinflammation 18: 131, https://doi.org/10.1186/s12974-021-02182-3.Search in Google Scholar PubMed PubMed Central

Tambasco, N., Nigro, P., Romoli, M., Prontera, P., Simoni, S., and Calabresi, P. (2016). A53T in a Parkinsonian family: a clinical update of the SNCA phenotypes. J. Neural. Transm. 123: 1301–1307, https://doi.org/10.1007/s00702-016-1578-6.Search in Google Scholar PubMed

Tansey, M.G., McCoy, M.K., and Frank-Cannon, T.C. (2007). Neuroinflammatory mechanisms in Parkinson’s disease: potential environmental triggers, pathways, and targets for early therapeutic intervention. Exp. Neurol. 208: 1–25, https://doi.org/10.1016/j.expneurol.2007.07.004.Search in Google Scholar PubMed PubMed Central

Teravskis, P.J., Covelo, A., Miller, E.C., Singh, B., Martell-Martínez, H.A., Benneyworth, M.A., Gallardo, C., Oxnard, B.R., Araque, A., Lee, M.K., et al.. (2018). A53t mutant alpha-synuclein induces tau-dependent postsynaptic impairment independently of neurodegenerative changes. J. Neurosci. 38: 9754–9767, https://doi.org/10.1523/jneurosci.0344-18.2018.Search in Google Scholar PubMed PubMed Central

Venkata, G., Ramalingayya, Cheruku, S.P., Nayak, P.G., Kishore, A., Shenoy, R., Chamallamudi, Rao, M., and Krishnadas, N. (2017). Rutin protects against neuronal damage in vitro and ameliorates doxorubicin-induced memory deficits in vivo in Wistar rats. Drug Des. Dev. Ther. 11: 1011–1026, https://doi.org/10.2147/DDDT.S103511.Search in Google Scholar PubMed PubMed Central

Wiseman, H. and Halliwell, B. (1996). Damage to DNA by reactive oxygen and nitrogen species: role in inflammatory disease and progression to cancer. Biochem. J. 313: 17–29, https://doi.org/10.1042/bj3130017.Search in Google Scholar PubMed PubMed Central

Xilouri, M., Brekk, O.R., and Stefanis, L. (2013). α-Synuclein and protein degradation systems: a reciprocal relationship. Mol. Neurobiol. 47: 537–551, https://doi.org/10.1007/s12035-012-8341-2.Search in Google Scholar PubMed

Yang, J., Guo, J., and Yuan, J. (2008). In vitro antioxidant properties of rutin. LWT - Food Sci. Technol. 41: 1060–1066, https://doi.org/10.1016/j.lwt.2007.06.010.Search in Google Scholar

Yu, X.L., Li, Y.N., Zhang, H., Su, Y.J., Zhou, W.W., Zhang, Z.P., Wang, S.W., Xu, P.X., Wang, Y.J., and Liu, R.T. (2015). Rutin inhibits amylin-induced neurocytotoxicity and oxidative stress. Food Funct. 6: 3296–3306, https://doi.org/10.1039/c5fo00500k.Search in Google Scholar PubMed

Zafar, K.S., Siddiqui, A., Sayeed, I., Ahmad, M., Salim, S., and Islam, F. (2003). Dose-dependent protective effect of selenium in rat model of Parkinson’s disease: neurobehavioral and neurochemical evidences. J. Neurochem. 84: 438–446, https://doi.org/10.1046/j.1471-4159.2003.01531.x.Search in Google Scholar PubMed

Zhang, X., Song, J., Shi, X., Miao, S., Li, Y., and Wen, A. (2013). Absorption and metabolism characteristics of rutin in caco-2 cells. Sci. World J. 2013: 382350, https://doi.org/10.1155/2013/382350.Search in Google Scholar PubMed PubMed Central

Zhang, X.M., Yin, M., and Zhang, M.H. (2014). Cell-based assays for Parkinson’s disease using differentiated human LUHMES cells. Acta Pharmacol. Sin. 35: 945–956, https://doi.org/10.1038/aps.2014.36.Search in Google Scholar PubMed PubMed Central

Zhu, J. and Chu, C.T. (2010). Mitochondrial dysfunction in Parkinson’s disease. J. Alzheim. Dis. 20: 325–334, https://doi.org/10.3233/JAD-2010-100363.Search in Google Scholar PubMed

Received: 2021-05-13
Accepted: 2021-09-15
Published Online: 2021-09-29
Published in Print: 2022-01-26

© 2021 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 1.5.2024 from https://www.degruyter.com/document/doi/10.1515/hsz-2021-0259/html
Scroll to top button