Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter February 7, 2014

Upregulation of the thioredoxin-dependent redox system during differentiation of 3T3-L1 cells to adipocytes

  • Ann-Marie Rajalin , Mustafa Micoogullari , Helmut Sies and Holger Steinbrenner EMAIL logo
From the journal Biological Chemistry

Abstract

Hydrogen peroxide acts as a signaling molecule in early adipogenesis. In differentiating adipocytes, elevated hydrogen peroxide generation is balanced through induction of antioxidant enzymes such as catalase and peroxiredoxins. Thioredoxin reductases (TrxR) and glutathione peroxidases (GPx) are selenoenzymes that constitute part of the major thiol-dependent antioxidant systems in cells. Here we show that the protein levels of cytoplasmic/nuclear TrxR1 and mitochondrial TrxR2 increase in the course of adipocyte differentiation of 3T3-L1 cells together with the TrxR2 substrate thioredoxin 2 (Trx2), resulting in elevated TrxR activity in mature adipocytes. Gene and protein expression of the GPx isoenzyme GPx4 was also stimulated during adipogenesis. Chronic exposure of 3T3-L1 cells to the anti-adipogenic factors tumor necrosis factor α (TNF-α) or rapamycin during differentiation suppressed TrxR1 and Trx2 upregulation, concomitantly with inhibition of adipogenesis and lipogenesis. In contrast, TNF-α or rapamycin did not affect expression of TrxRs and their Trx substrates in mature adipocytes. These results indicate that upregulation of the thioredoxin-dependent redox system is linked to the development of an adipocyte phenotype.


Corresponding author: Holger Steinbrenner, Institute for Biochemistry and Molecular Biology I, Heinrich-Heine-University Düsseldorf, Universitätsstrasse 1, D-40225 Düsseldorf, Germany, e-mail:
aThese authors contributed equally to this work.

Acknowledgments

This study was supported by a grant of Deutsche Forschungsgemeinschaft (DFG; Bonn, Germany) to H. Steinbrenner (STE 1782/2-2). H. Sies is a Fellow of the National Foundation for Cancer Research (NFCR; Bethesda, MD). We thank A. Borchardt, T. Becher and M. Engels for the excellent technical assistance. We thank Dr. S. Schinner (Department of Endocrinology and Diabetology, University Hospital Düsseldorf) and Dr. J. Haendeler (Leibniz-Institut für Umweltmedizinische Forschung Düsseldorf) for the helpful discussions.

References

Björnstedt, M., Hamberg, M., Kumar, S., Xue, J., and Holmgren, A. (1995). Human thioredoxin reductase directly reduces lipid hydroperoxides by NADPH and selenocystine strongly stimulates the reaction via catalytically generated selenols. J. Biol. Chem. 270, 11761–11764.10.1074/jbc.270.20.11761Search in Google Scholar PubMed

Brigelius-Flohé, R. and Maiorino, M. (2013). Glutathione peroxidases. Biochim. Biophys. Acta 1830, 3289–3303.10.1016/j.bbagen.2012.11.020Search in Google Scholar PubMed

Cawthorn, W.P., Heyd, F., Hegyi, K., and Sethi, J.K. (2007). Tumour necrosis factor-alpha inhibits adipogenesis via a β-catenin/TCF4(TCF7L2)-dependent pathway. Cell Death Differ. 14, 1361–1373.10.1038/sj.cdd.4402127Search in Google Scholar PubMed PubMed Central

Chutkow, W.A. and Lee, R.T. (2011). Thioredoxin regulates adipogenesis through thioredoxin-interacting protein (Txnip) protein stability. J. Biol. Chem. 286, 29139–29145.10.1074/jbc.M111.267666Search in Google Scholar PubMed PubMed Central

Cristancho, A.G. and Lazar, M.A. (2011). Forming functional fat: a growing understanding of adipocyte differentiation. Nat. Rev. Mol. Cell Biol. 12, 722–734.10.1038/nrm3198Search in Google Scholar PubMed PubMed Central

Das, S.K., Sharma, N.K., Hasstedt, S.J., Mondal, A.K., Ma, K., Kangberg, K.A., and Elbein, S.C. (2011). An integrative genomics approach identifies activation of thioredoxin/thioredoxin reductase-1 mediated oxidative stress defense pathway and inhibition of angiogenesis in obese nondiabetic human subjects. J. Clin. Endocrinol. Metab. 96, E1308–1313.10.1210/jc.2011-0101Search in Google Scholar PubMed PubMed Central

Ducluzeau, P.H., Priou, M., Weitheimer, M., Flamment, M., Duluc, L., Iacobazi, F., Soleti, R., Simard, G., Durand, A., Rieusset, J., et al. (2011). Dynamic regulation of mitochondrial network and oxidative functions during 3T3-L1 fat cell differentiation. J. Physiol. Biochem. 67, 285–296.10.1007/s13105-011-0074-6Search in Google Scholar PubMed

Findeisen, H.M., Pearson, K.J., Gizard, F., Zhao, Y., Qing, H., Jones, K.L., Cohn, D., Heywood, E.B., de Cabo, R., and Bruemmer, D. (2011). Oxidative stress accumulates in adipose tissue during aging and inhibits adipogenesis. PLoS One 6, e18532.10.1371/journal.pone.0018532Search in Google Scholar PubMed PubMed Central

Furukawa, S., Fujita, T., Shimabukuro, M., Iwaki, M., Yamada, Y., Nakajima, Y., Nakayama, O., Makishima, M., Matsuda, M., and Shimomura, I. (2004). Increased oxidative stress in obesity and its impact on metabolic syndrome. J. Clin. Invest. 114, 1752–1761.10.1172/JCI21625Search in Google Scholar PubMed PubMed Central

Gasdaska, J.R., Harney, J.W., Gasdaska, P.Y., Powis, G., and Berry, M.J. (1999). Regulation of human thioredoxin reductase expression and activity by 3′-untranslated region selenocysteine insertion sequence and mRNA instability elements. J. Biol. Chem. 274, 25379–25385.10.1074/jbc.274.36.25379Search in Google Scholar PubMed

Green, H. and Meuth, M. (1974). An established pre-adipose cell line and its differentiation in culture. Cell 3, 127–133.10.1016/0092-8674(74)90116-0Search in Google Scholar

Gustafson, B. and Smith, U. (2006) Cytokines promote Wnt signaling and inflammation and impair the normal differentiation and lipid accumulation in 3T3-L1 preadipocytes. J. Biol. Chem. 281, 9507–9516.Search in Google Scholar

Higuchi, M., Dusting, G.J., Peshavariya, H., Jiang, F., Hsiao, S.T., Chan, E.C., and Liu, G.S. (2013). Differentiation of human adipose-derived stem cells into fat involves reactive oxygen species and Forkhead box O1 mediated upregulation of antioxidant enzymes. Stem Cells Dev. 22, 878–888.10.1089/scd.2012.0306Search in Google Scholar PubMed PubMed Central

Huh, J.Y., Kim, Y., Jeong, J., Park, J., Kim, I., Huh, K.H., Kim, Y.S., Woo, H.A., Rhee, S.G., Lee, K.J., et al. (2012). Peroxiredoxin 3 is a key molecule regulating adipocyte oxidative stress, mitochondrial biogenesis, and adipokine expression. Antioxid. Redox Signal. 16, 229–243.10.1089/ars.2010.3766Search in Google Scholar PubMed PubMed Central

Imhoff, B.R. and Hansen, J.M. (2010). Extracellular redox environments regulate adipocyte differentiation. Differentiation 80, 31–39.10.1016/j.diff.2010.04.005Search in Google Scholar PubMed

Imhoff, B.R. and Hansen, J.M. (2011). Differential redox potential profiles during adipogenesis and osteogenesis. Cell. Mol. Biol. Lett. 16, 149–161.10.2478/s11658-010-0042-0Search in Google Scholar PubMed PubMed Central

Iverson, S.V., Eriksson, S., Xu, J., Prigge, J.R., Talago, E.A., Meade, T.A., Meade, E.S., Capecchi, M.R., Arnér, E.S., and Schmidt, E.E. (2013). A Txnrd1-dependent metabolic switch alters hepatic lipogenesis, glycogen storage, and detoxification. Free Radic. Biol. Med. 63, 369–380.10.1016/j.freeradbiomed.2013.05.028Search in Google Scholar PubMed PubMed Central

Kim, J.E. and Chen, J. (2004). Regulation of peroxisome proliferator-activated receptor-γ activity by mammalian target of rapamycin and amino acids in adipogenesis. Diabetes 53, 2748–2756.10.2337/diabetes.53.11.2748Search in Google Scholar PubMed

Kim, C.Y. and Kim, K.H. (2013). Dexamethasone-induced selenoprotein S degradation is required for adipogenesis. J. Lipid Res. 54, 2069–2082.10.1194/jlr.M034603Search in Google Scholar PubMed PubMed Central

Kim, C.Y., Kim, G.N., Wiacek, J.L., Chen, C.Y., and Kim, K.H. (2012). Selenate inhibits adipogenesis through induction of transforming growth factor-β1 (TGF-β1) signaling. Biochem. Biophys. Res. Commun. 426, 551–557.10.1016/j.bbrc.2012.08.125Search in Google Scholar PubMed

Kobayashi, H., Matsuda, M., Fukuhara, A., Komuro, R., and Shimomura, I. (2009). Dysregulated glutathione metabolism links to impaired insulin action in adipocytes. Am. J. Physiol. Endocrinol. Metab. 296, E1326-E1334.10.1152/ajpendo.90921.2008Search in Google Scholar PubMed

Lee, Y.S., Kim, A.Y., Choi, J.W., Kim, M., Yasue, S., Son, H.J., Masuzaki, H., Park, K.S., and Kim, J.B. (2008). Dysregulation of adipose glutathione peroxidase 3 in obesity contributes to local and systemic oxidative stress. Mol. Endocrinol. 22, 2176–2189.10.1210/me.2008-0023Search in Google Scholar

Lee, H., Lee, Y.J., Choi, H., Ko, E.H., and Kim, J.W. (2009). Reactive oxygen species facilitate adipocyte differentiation by accelerating mitotic clonal expansion. J. Biol. Chem. 284, 10601–10609.10.1074/jbc.M808742200Search in Google Scholar

Leist, M., Raab, B., Maurer, S., Rösick, U., and Brigelius-Flohé, R. (1996). Conventional cell culture media do not adequately supply cells with antioxidants and thus facilitate peroxide-induced genotoxicity. Free Radic. Biol. Med. 21, 297–306.10.1016/0891-5849(96)00045-7Search in Google Scholar

Lu, J. and Holmgren, A. (2014). The thioredoxin antioxidant system. Free Radic. Biol. Med. 66, 75–87.10.1016/j.freeradbiomed.2013.07.036Search in Google Scholar PubMed

MacDougald, O.A. and Lane, M.D. (1995). Transcriptional regulation of gene expression during adipocyte differentiation. Annu. Rev. Biochem. 64, 345–373.10.1146/annurev.bi.64.070195.002021Search in Google Scholar PubMed

Nishiyama, A., Matsui, M., Iwata, S., Hirota, K., Masutani, H., Nakamura, H., Takagi, Y., Sono, H., Gon, Y., and Yodoi, J. (1999). Identification of thioredoxin-binding protein-2/vitamin D3 up-regulated protein 1 as a negative regulator of thioredoxin function and expression. J. Biol. Chem. 274, 21645–21650.10.1074/jbc.274.31.21645Search in Google Scholar PubMed

Ovadia, H., Haim, Y., Nov, O., Almog, O., Kovsan, J., Bashan, N., Benhar, M., and Rudich, A. (2011). Increased adipocyte S-nitrosylation targets anti-lipolytic action of insulin: relevance to adipose tissue dysfunction in obesity. J. Biol. Chem. 286, 30433–30443.10.1074/jbc.M111.235945Search in Google Scholar PubMed PubMed Central

Pinto, A., Juniper, D.T., Sanil, M., Morgan, L., Clark, L., Sies, H., Rayman, M.P., and Steinbrenner, H. (2012). Supranutritional selenium induces alterations in molecular targets related to energy metabolism in skeletal muscle and visceral adipose tissue of pigs. J. Inorg. Biochem. 114, 47–54.10.1016/j.jinorgbio.2012.04.011Search in Google Scholar PubMed

Schomburg, L. and Schweizer, U. (2009). Hierarchical regulation of selenoprotein expression and sex-specific effects of selenium. Biochim. Biophys. Acta 1790, 1453–1462.10.1016/j.bbagen.2009.03.015Search in Google Scholar PubMed

Schröder, K., Wandzioch, K., Helmcke, I., and Brandes, R.P. (2009). Nox4 acts as a switch between differentiation and proliferation in preadipocytes. Arterioscler. Thromb. Vasc. Biol. 29, 239–245.10.1161/ATVBAHA.108.174219Search in Google Scholar PubMed

Speckmann, B., Bidmon, H.J., Pinto, A., Anlauf, M., Sies, H., and Steinbrenner, H. (2011). Induction of glutathione peroxidase 4 expression during enterocytic cell differentiation. J. Biol. Chem. 286, 10764–10772.10.1074/jbc.M110.216028Search in Google Scholar PubMed PubMed Central

Steinbrenner, H. and Sies, H. (2009). Protection against reactive oxygen species by selenoproteins. Biochim. Biophys. Acta 1790, 1478–1485.10.1016/j.bbagen.2009.02.014Search in Google Scholar PubMed

Stoytcheva, Z.R. and Berry, M.J. (2009). Transcriptional regulation of mammalian selenoprotein expression. Biochim. Biophys. Acta 1790, 1429–1440.10.1016/j.bbagen.2009.05.012Search in Google Scholar PubMed PubMed Central

Tormos, K.V., Anso, E., Hamanaka, R.B., Eisenbart, J., Joseph, J., Kalyanaraman, B., and Chandel, N.S. (2011). Mitochondrial complex III ROS regulate adipocyte differentiation. Cell Metab. 14, 537–544.10.1016/j.cmet.2011.08.007Search in Google Scholar PubMed PubMed Central

Wilson-Fritch, L., Burkart, A., Bell, G., Mendelson, K., Leszyk, J., Nicoloro, S., Czech, M., and Corvera, S. (2003). Mitochondrial biogenesis and remodeling during adipogenesis and in response to the insulin sensitizer rosiglitazone. Mol. Cell. Biol. 23, 1085–1094.10.1128/MCB.23.3.1085-1094.2003Search in Google Scholar PubMed PubMed Central

Zhang, Y. and Chen, X. (2011). Reducing selenoprotein P expression suppresses adipocyte differentiation as a result of increased preadipocyte inflammation. Am. J. Physiol. Endocrinol. Metab. 300, E77–E85.10.1152/ajpendo.00380.2010Search in Google Scholar PubMed PubMed Central

Received: 2014-1-9
Accepted: 2014-2-5
Published Online: 2014-2-7
Published in Print: 2014-6-1

©2014 by Walter de Gruyter Berlin/Boston

Downloaded on 29.5.2024 from https://www.degruyter.com/document/doi/10.1515/hsz-2014-0102/html
Scroll to top button