Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter July 5, 2013

The role of steroids in mesenchymal stem cell differentiation: molecular and clinical perspectives

  • Rony H. Salloum , J. Peter Rubin and Kacey G. Marra EMAIL logo

Abstract

Mesenchymal stem cells (MSCs) are multipotent stem cells capable of either self-regeneration or differentiation into more mature cell types, depending on the environmental stimuli. MSCs originate from the mesoderm and differentiate readily into mesodermal tissue. The tissues most studied in that respect are bone, fat and cartilage, and the key molecular elements in these three differentiation pathways are RUNX2, PPARγ and SOX9, respectively. Steroidal molecules play an important role in determining the fate of MSCs, mainly by altering the expression of key cellular molecules. Not all steroids exert the same effects on these cells. This review discusses the effects of sex steroids and glucocorticoids on the proliferative capacity and differentiation patterns of MSCs. With stem-cell-based therapy gaining worldwide attention, we explore the role of steroids in modulating MSCs for clinical and therapeutic purposes. The ease with which some MSCs, such as adipose-derived stem cells, can be harvested from the body and manipulated in the laboratory may lead to increased interest in this era of stem cells.


Corresponding author: Kacey G. Marra, PhD, Department of Plastic Surgery, 1655E Biomedical Science Tower, 200 Lothrop Street, University of Pittsburgh, Pittsburgh, PA 15261, USA, Phone: +1 412-383-8924, Fax: +1 412-648-2821; Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, USA; and McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, USA

References

1. Caplan AI. Mesenchymal stem cells. J Orthopaed Res 1991;9: 641–50.10.1002/jor.1100090504Search in Google Scholar PubMed

2. Friedenstein AJ, Chailakhjan RK, Lalykina KS. The development of fibroblast colonies in monolayer cultures of guinea-pig bone marrow and spleen cells. Cell Tissue Kinet 1970;3:393–403.10.1111/j.1365-2184.1970.tb00347.xSearch in Google Scholar PubMed

3. International Society for Cellular Therapy Annual Meeting, Berlin, Germany, 2006. Abstracts. Cytotherapy. 2006;8:Suppl 1:80.Search in Google Scholar

4. da Silva Meirelles L, Caplan AI, Nardi NB. In search of the in vivo identity of mesenchymal stem cells. Stem Cells (Dayton, Ohio) 2008;26:2287–99.10.1634/stemcells.2007-1122Search in Google Scholar PubMed

5. Crisan M, Yap S, Casteilla L, Chen CW, Corselli M, Park TS, Andriolo G, Sun B, Zheng B, Zhang L, Norotte C, Teng PN, Traas J, Schugar R, Deasy BM, Badylak S, Buhring HJ, Giacobino JP, Lazzari L, Huard J, Peault B. A perivascular origin for mesenchymal stem cells in multiple human organs. Cell Stem Cell 2008;3:301–13.10.1016/j.stem.2008.07.003Search in Google Scholar PubMed

6. Zuk PA, Zhu M, Mizuno H, Huang J, Futrell JW, Katz AJ, Benhaim P, Lorenz HP, Hedrick MH. Multilineage cells from human adipose tissue: implications for cell-based therapies. Tissue Eng 2001;7:211–28.10.1089/107632701300062859Search in Google Scholar PubMed

7. Hida N, Nishiyama N, Miyoshi S, Kira S, Segawa K, Uyama T, Mori T, Miyado K, Ikegami Y, Cui C, Kiyono T, Kyo S, Shimizu T, Okano T, Sakamoto M, Ogawa S, Umezawa A. Novel cardiac precursor-like cells from human menstrual blood-derived mesenchymal cells. Stem Cells (Dayton, Ohio) 2008;26:1695–704.10.1634/stemcells.2007-0826Search in Google Scholar PubMed

8. Roufosse CA, Direkze NC, Otto WR, Wright NA. Circulating mesenchymal stem cells. Int J Biochem Cell B 2004;36:585–97.10.1016/j.biocel.2003.10.007Search in Google Scholar PubMed

9. Troyer DL, Weiss ML. Wharton′s jelly-derived cells are a primitive stromal cell population. Stem Cells (Dayton, Ohio) 2008;26:591–9.10.1634/stemcells.2007-0439Search in Google Scholar PubMed PubMed Central

10. In ′t Anker PS, Scherjon SA, Kleijburg-van der Keur C, de Groot-Swings GM, Claas FH, Fibbe WE, Kanhai HH. Isolation of mesenchymal stem cells of fetal or maternal origin from human placenta. Stem Cells (Dayton, Ohio) 2004;22:1338–45.10.1634/stemcells.2004-0058Search in Google Scholar PubMed

11. Van RL, Bayliss CE, Roncari DA. Cytological and enzymological characterization of adult human adipocyte precursors in culture. J Clin Invest 1976;58:699–704.10.1172/JCI108516Search in Google Scholar PubMed PubMed Central

12. Lindroos B, Suuronen R, Miettinen S. The potential of adipose stem cells in regenerative medicine. Stem Cell Rev 2011;7: 269–91.10.1007/s12015-010-9193-7Search in Google Scholar PubMed

13. Suga H, Matsumoto D, Inoue K, Shigeura T, Eto H, Aoi N, Kato H, Abe H, Yoshimura K. Numerical measurement of viable and nonviable adipocytes and other cellular components in aspirated fat tissue. Plast Reconstr Surg 2008; 122:103–14.10.1097/PRS.0b013e31817742edSearch in Google Scholar PubMed

14. Eto H, Suga H, Matsumoto D, Inoue K, Aoi N, Kato H, Araki J, Yoshimura K. Characterization of structure and cellular components of aspirated and excised adipose tissue. Plast Reconstr Surg 2009;124:1087–97.10.1097/PRS.0b013e3181b5a3f1Search in Google Scholar PubMed

15. Rubio D, Garcia-Castro J, Martin MC, de la Fuente R, Cigudosa JC, Lloyd AC, Bernad A. Spontaneous human adult stem cell transformation. Cancer Res 2005;65:3035–9.10.1158/0008-5472.CAN-04-4194Search in Google Scholar PubMed

16. Pittenger MF, Mackay AM, Beck SC, Jaiswal RK, Douglas R, Mosca JD, Moorman MA, Simonetti DW, Craig S, Marshak DR. Multilineage potential of adult human mesenchymal stem cells. Science (New York, NY). 1999;284:143–7.10.1126/science.284.5411.143Search in Google Scholar PubMed

17. Civin CI, Trischmann T, Kadan NS, Davis J, Noga S, Cohen K, Duffy B, Groenewegen I, Wiley J, Law P, Hardwick A, Oldham F, Gee A. Highly purified CD34-positive cells reconstitute hematopoiesis. J Clin Oncol 1996;14:2224–33.10.1200/JCO.1996.14.8.2224Search in Google Scholar PubMed

18. Gronthos S, Franklin DM, Leddy HA, Robey PG, Storms RW, Gimble JM. Surface protein characterization of human adipose tissue-derived stromal cells. J Cell Physiol 2001;189:54–63.10.1002/jcp.1138Search in Google Scholar PubMed

19. Festy F, Hoareau L, Bes-Houtmann S, Pequin AM, Gonthier MP, Munstun A, Hoarau JJ, Cesari M, Roche R. Surface protein expression between human adipose tissue-derived stromal cells and mature adipocytes. Histochem Cell Biol 2005;124:113–21.10.1007/s00418-005-0014-zSearch in Google Scholar PubMed

20. Kern S, Eichler H, Stoeve J, Kluter H, Bieback K. Comparative analysis of mesenchymal stem cells from bone marrow, umbilical cord blood, or adipose tissue. Stem Cells (Dayton, Ohio) 2006;24:1294–301.10.1634/stemcells.2005-0342Search in Google Scholar PubMed

21. Gronthos S, Brahim J, Li W, Fisher LW, Cherman N, Boyde A, DenBesten P, Robey PG, Shi S. Stem cell properties of human dental pulp stem cells. J Dent Res 2002;81:531–5.10.1177/154405910208100806Search in Google Scholar PubMed

22. Panepucci RA, Siufi JL, Silva WA Jr., Proto-Siquiera R, Neder L, Orellana M, Rocha V, Covas DT, Zago MA. Comparison of gene expression of umbilical cord vein and bone marrow-derived mesenchymal stem cells. Stem Cells (Dayton, Ohio) 2004;22:1263–78.10.1634/stemcells.2004-0024Search in Google Scholar

23. Parker AM, Katz AJ. Adipose-derived stem cells for the regeneration of damaged tissues. Expert Opin Biol Ther 2006;6:567–78.10.1517/14712598.6.6.567Search in Google Scholar

24. Strioga M, Viswanathan S, Darinskas A, Slaby O, Michalek J. Same or not the same? Comparison of adipose tissue-derived versus bone marrow-derived mesenchymal stem and stromal cells. Stem Cells Dev 2012;21:2724–52.10.1089/scd.2011.0722Search in Google Scholar

25. Gimble JM, Katz AJ, Bunnell BA. Adipose-derived stem cells for regenerative medicine. Circ Res 2007;100:1249–60.10.1161/01.RES.0000265074.83288.09Search in Google Scholar

26. Katz AJ, Tholpady A, Tholpady SS, Shang H, Ogle RC. Cell surface and transcriptional characterization of human adipose-derived adherent stromal (hADAS) cells. Stem Cells (Dayton, Ohio) 2005;23:412–23.10.1634/stemcells.2004-0021Search in Google Scholar

27. De Ugarte DA, Alfonso Z, Zuk PA, Elbarbary A, Zhu M, Ashjian P, Benhaim P, Hedrick MH, Fraser JK. Differential expression of stem cell mobilization-associated molecules on multi-lineage cells from adipose tissue and bone marrow. Immunol Lett 2003;89:267–70.10.1016/S0165-2478(03)00108-1Search in Google Scholar

28. Noel D, Caton D, Roche S, Bony C, Lehmann S, Casteilla L, Jorgensen C, Cousin B. Cell specific differences between human adipose-derived and mesenchymal-stromal cells despite similar differentiation potentials. Exp Cell Res 2008;314:1575–84.10.1016/j.yexcr.2007.12.022Search in Google Scholar PubMed

29. Park HW, Shin JS, Kim CW. Proteome of mesenchymal stem cells. Proteomics 2007;7:2881–94.10.1002/pmic.200700089Search in Google Scholar PubMed

30. Izadpanah R, Trygg C, Patel B, Kriedt C, Dufour J, Gimble JM, Bunnell BA. Biologic properties of mesenchymal stem cells derived from bone marrow and adipose tissue. J Cell Biochem 2006;99:1285–97.10.1002/jcb.20904Search in Google Scholar PubMed PubMed Central

31. Zhang Y, Khan D, Delling J, Tobiasch E. Mechanisms underlying the osteo- and adipo-differentiation of human mesenchymal stem cells. ScientificWorldJournal 2012;2012:793823.10.1100/2012/793823Search in Google Scholar PubMed PubMed Central

32. Wagner W, Wein F, Seckinger A, Frankhauser M, Wirkner U, Krause U, Blake J, Schwager C, Eckstein V, Ansorge W, Ho AD. Comparative characteristics of mesenchymal stem cells from human bone marrow, adipose tissue, and umbilical cord blood. Exp Hematol 2005;33:1402–16.10.1016/j.exphem.2005.07.003Search in Google Scholar PubMed

33. Alvarez-Dolado M, Pardal R, Garcia-Verdugo JM, Fike JR, Lee HO, Pfeffer K, Lois C, Morrison SJ, Alvarez-Buylla A. Fusion of bone-marrow-derived cells with Purkinje neurons, cardiomyocytes and hepatocytes. Nature 2003;425:968–73.10.1038/nature02069Search in Google Scholar PubMed

34. Kang XQ, Zang WJ, Bao LJ, Li DL, Song TS, Xu XL, Yu XJ. Fibroblast growth factor-4 and hepatocyte growth factor induce differentiation of human umbilical cord blood-derived mesenchymal stem cells into hepatocytes. World J Gastroenterol 2005;11:7461–5.10.3748/wjg.v11.i47.7461Search in Google Scholar PubMed PubMed Central

35. Hung SC, Cheng H, Pan CY, Tsai MJ, Kao LS, Ma HL. In vitro differentiation of size-sieved stem cells into electrically active neural cells. Stem cells (Dayton, Ohio) 2002;20:522–9.10.1634/stemcells.20-6-522Search in Google Scholar PubMed

36. Lee JW, Kim YH, Kim SH, Han SH, Hahn SB. Chondrogenic differentiation of mesenchymal stem cells and its clinical applications. Yonsei Medical J 2004;45:Suppl:41–7.10.3349/ymj.2004.45.Suppl.41Search in Google Scholar PubMed

37. Liu ZJ, Zhuge Y, Velazquez OC. Trafficking and differentiation of mesenchymal stem cells. J Cell Biochem 2009;106:984–91.10.1002/jcb.22091Search in Google Scholar PubMed

38. Jiang Y, Jahagirdar BN, Reinhardt RL, Schwartz RE, Keene CD, Ortiz-Gonzalez XR, Reyes M, Lenvik T, Lund T, Blackstad M, Du J, Aldrich S, Lisberg A, Low WC, Largaespada DA, Verfaillie CM. Pluripotency of mesenchymal stem cells derived from adult marrow. Nature 2002;418:41–9.10.1038/nature00870Search in Google Scholar PubMed

39. Gregory CA, Singh H, Perry AS, Prockop DJ. The Wnt signaling inhibitor dickkopf-1 is required for reentry into the cell cycle of human adult stem cells from bone marrow. J Biol Chem 2003;278:28067–78.10.1074/jbc.M300373200Search in Google Scholar PubMed

40. Zuk PA, Zhu M, Ashjian P, De Ugarte DA, Huang JI, Mizuno H, Alfonso ZC, Fraser JK, Benhaim P, Hedrick MH. Human adipose tissue is a source of multipotent stem cells. Mol Biol Cell 2002;13:4279–95.10.1091/mbc.e02-02-0105Search in Google Scholar PubMed PubMed Central

41. Zippel N, Limbach CA, Ratajski N, Urban C, Luparello C, Pansky A, Kassack MU, Tobiasch E. Purinergic receptors influence the differentiation of human mesenchymal stem cells. Stem Cells Dev 2012;21:884–900.10.1089/scd.2010.0576Search in Google Scholar PubMed

42. Jansen JH, van der Jagt OP, Punt BJ, Verhaar JA, van Leeuwen JP, Weinans H, Jahr H. Stimulation of osteogenic differentiation in human osteoprogenitor cells by pulsed electromagnetic fields: an in vitro study. BMC Musculoskelet Disord 2010;11:188.10.1186/1471-2474-11-188Search in Google Scholar PubMed PubMed Central

43. Grigoriadis AE, Heersche JN, Aubin JE. Differentiation of muscle, fat, cartilage, and bone from progenitor cells present in a bone-derived clonal cell population: effect of dexamethasone. J Cell Biol 1988;106:2139–51.10.1083/jcb.106.6.2139Search in Google Scholar PubMed PubMed Central

44. Zhu Y, Liu T, Song K, Fan X, Ma X, Cui Z. Adipose-derived stem cell: a better stem cell than BMSC. Cell Biochem Funct 2008;26:664–75.10.1002/cbf.1488Search in Google Scholar PubMed

45. Liu TM, Martina M, Hutmacher DW, Hui JH, Lee EH, Lim B. Identification of common pathways mediating differentiation of bone marrow- and adipose tissue-derived human mesenchymal stem cells into three mesenchymal lineages. Stem cells (Dayton, Ohio) 2007;25:750–60.10.1634/stemcells.2006-0394Search in Google Scholar PubMed

46. Reich CM, Raabe O, Wenisch S, Bridger PS, Kramer M, Arnhold S. Isolation, culture and chondrogenic differentiation of canine adipose tissue- and bone marrow-derived mesenchymal stem cells–a comparative study. Vet Res Commun 2012;36:139–48.10.1007/s11259-012-9523-0Search in Google Scholar PubMed

47. Sekiya I, Larson BL, Vuoristo JT, Cui JG, Prockop DJ. Adipogenic differentiation of human adult stem cells from bone marrow stroma (MSCs). J Bone Miner Res 2004;19:256–64.10.1359/JBMR.0301220Search in Google Scholar PubMed

48. Ikeda R, Yoshida K, Tsukahara S, Sakamoto Y, Tanaka H, Furukawa K, Inoue I. The promyelotic leukemia zinc finger promotes osteoblastic differentiation of human mesenchymal stem cells as an upstream regulator of CBFA1. J Biol Chem 2005;280:8523–30.10.1074/jbc.M409442200Search in Google Scholar PubMed

49. Lefterova MI, Zhang Y, Steger DJ, Schupp M, Schug J, Cristancho A, Feng D, Zhuo D, Stoeckert CJ, Jr., Liu XS, Lazar MA. PPARgamma and C/EBP factors orchestrate adipocyte biology via adjacent binding on a genome-wide scale. Genes Dev 2008;22:2941–52.10.1101/gad.1709008Search in Google Scholar PubMed PubMed Central

50. Fujita T, Azuma Y, Fukuyama R, Hattori Y, Yoshida C, Koida M, Ogita K, Komori T. Runx2 induces osteoblast and chondrocyte differentiation and enhances their migration by coupling with PI3K-Akt signaling. J Cell Biol 2004;166:85–95.10.1083/jcb.200401138Search in Google Scholar PubMed PubMed Central

51. Akiyama H, Lefebvre V. Unraveling the transcriptional regulatory machinery in chondrogenesis. J Bone Miner Metab 2011;29:390–5.10.1007/s00774-011-0273-9Search in Google Scholar PubMed PubMed Central

52. Komori T. Regulation of osteoblast differentiation by transcription factors. J Cell Biochem 2006;99:1233–9.10.1002/jcb.20958Search in Google Scholar PubMed

53. Komori T. Runx2, a multifunctional transcription factor in skeletal development. J Cell Biochem 2002;87:1–8.10.1002/jcb.10276Search in Google Scholar PubMed

54. Westendorf JJ. Transcriptional co-repressors of Runx2. J Cell Biochem 2006;98:54–64.10.1002/jcb.20805Search in Google Scholar PubMed

55. Teven CM, Liu X, Hu N, Tang N, Kim SH, Huang E, Yang K, Li M, Gao JL, Liu H, Natale RB, Luther G, Luo Q, Wang L, Rames R, Bi Y, Luo J, Luu HH, Haydon RC, Reid RR, He TC. Epigenetic regulation of mesenchymal stem cells: a focus on osteogenic and adipogenic differentiation. Stem Cells Int 2011;2011:201371.10.4061/2011/201371Search in Google Scholar PubMed PubMed Central

56. Shakibaei M, Shayan P, Busch F, Aldinger C, Buhrmann C, Lueders C, Mobasheri A. Resveratrol mediated modulation of Sirt-1/Runx2 promotes osteogenic differentiation of mesenchymal stem cells: potential role of Runx2 deacetylation. PLos One 2012;7:e35712.10.1371/journal.pone.0035712Search in Google Scholar PubMed PubMed Central

57. Salasznyk RM, Klees RF, Westcott AM, Vandenberg S, Bennett K, Plopper GE. Focusing of gene expression as the basis of stem cell differentiation. Stem Cells Dev 2005;14:608–20.10.1089/scd.2005.14.608Search in Google Scholar PubMed

58. Otto TC, Lane MD. Adipose development: from stem cell to adipocyte. Crit Rev Biochem Mol Biol 2005;40:229–42.10.1080/10409230591008189Search in Google Scholar PubMed

59. Sugii S, Evans RM. Epigenetic codes of PPARgamma in metabolic disease. FEBS Lett 2011;585:2121-8.10.1016/j.febslet.2011.05.007Search in Google Scholar PubMed PubMed Central

60. Smink JJ, Leutz A. Instruction of mesenchymal cell fate by the transcription factor C/EBPbeta. Gene 2012;497:10–7.10.1016/j.gene.2012.01.043Search in Google Scholar PubMed

61. A IJ, Tan NS, Gelman L, Kersten S, Seydoux J, Xu J, Metzger D, Canaple L, Chambon P, Wahli W, Desvergne B. In vivo activation of PPAR target genes by RXR homodimers. EMBO J 2004;23:2083–91.10.1038/sj.emboj.7600209Search in Google Scholar PubMed PubMed Central

62. Jeninga EH, Bugge A, Nielsen R, Kersten S, Hamers N, Dani C, Wabitsch M, Berger R, Stunnenberg HG, Mandrup S, Kalkhoven E. Peroxisome proliferator-activated receptor gamma regulates expression of the anti-lipolytic G-protein-coupled receptor 81 (GPR81/Gpr81). J Biol Chem 2009;284:26385–93.10.1074/jbc.M109.040741Search in Google Scholar

63. Bernlohr DA, Doering TL, Kelly TJ Jr., Lane MD. Tissue specific expression of p422 protein, a putative lipid carrier, in mouse adipocytes. Biochem Biophys Res Commun 1985;132:850–5.10.1016/0006-291X(85)91209-4Search in Google Scholar

64. Ailhaud G, Grimaldi P, Negrel R. Cellular and molecular aspects of adipose tissue development. Annu Rev Nutr 1992;12:207–33.10.1146/annurev.nu.12.070192.001231Search in Google Scholar

65. Yoo HJ, Yoon SS, Park SY, Lee EY, Lee EB, Kim JH, Song YW. Gene expression profile during chondrogenesis in human bone marrow derived mesenchymal stem cells using a cDNA microarray. J Korean Med Sci 2011;26:851–8.10.3346/jkms.2011.26.7.851Search in Google Scholar

66. Bi W, Huang W, Whitworth DJ, Deng JM, Zhang Z, Behringer RR, de Crombrugghe B. Haploinsufficiency of Sox9 results in defective cartilage primordia and premature skeletal mineralization. Proc Natl Acad Sci USA 2001;98:6698–703.10.1073/pnas.111092198Search in Google Scholar

67. Smits P, Li P, Mandel J, Zhang Z, Deng JM, Behringer RR, de Crombrugghe B, Lefebvre V. The transcription factors L-Sox5 and Sox6 are essential for cartilage formation. Dev Cell 2001;1:277–90.10.1016/S1534-5807(01)00003-XSearch in Google Scholar

68. Yang B, Guo H, Zhang Y, Chen L, Ying D, Dong S. MicroRNA-145 regulates chondrogenic differentiation of mesenchymal stem cells by targeting Sox9. PLos One 2011;6:e21679.10.1371/journal.pone.0021679Search in Google Scholar

69. Gadjanski I, Spiller K, Vunjak-Novakovic G. Time-dependent processes in stem cell-based tissue engineering of articular cartilage. Stem Cell Rev 2012;8:863–81.10.1007/s12015-011-9328-5Search in Google Scholar

70. Goldring MB, Tsuchimochi K, Ijiri K. The control of chondrogenesis. J Cell Biochem 2006;97:33–44.10.1002/jcb.20652Search in Google Scholar

71. Minina E, Kreschel C, Naski MC, Ornitz DM, Vortkamp A. Interaction of FGF, Ihh/Pthlh, and BMP signaling integrates chondrocyte proliferation and hypertrophic differentiation. Dev Cell 2002;3:439–49.10.1016/S1534-5807(02)00261-7Search in Google Scholar

72. Vanderschueren D, Vandenput L, Boonen S, Lindberg MK, Bouillon R, Ohlsson C. Androgens and bone. Endocr Rev 2004;25:389–425.10.1210/er.2003-0003Search in Google Scholar PubMed

73. Hong L, Colpan A, Peptan IA. Modulations of 17-beta estradiol on osteogenic and adipogenic differentiations of human mesenchymal stem cells. Tissue Eng 2006;12:2747–53.10.1089/ten.2006.12.2747Search in Google Scholar PubMed

74. Ramalho AC, Jullienne A, Couttet P, Graulet AM, Morieux C, de Vernejoul MC, Cohen-Solal ME. Effect of oestradiol on cytokine production in immortalized human marrow stromal cell lines. Cytokine 2001;16:126–30.10.1006/cyto.2001.0956Search in Google Scholar PubMed

75. Bonab MM, Alimoghaddam K, Talebian F, Ghaffari SH, Ghavamzadeh A, Nikbin B. Aging of mesenchymal stem cell in vitro. BMC Cell Biol 2006;7:14.10.1186/1471-2121-7-14Search in Google Scholar PubMed PubMed Central

76. Baxter MA, Wynn RF, Jowitt SN, Wraith JE, Fairbairn LJ, Bellantuono I. Study of telomere length reveals rapid aging of human marrow stromal cells following in vitro expansion. Stem Cells (Dayton, Ohio) 2004;22:675–82.10.1634/stemcells.22-5-675Search in Google Scholar PubMed

77. Hong L, Zhang G, Sultana H, Yu Y, Wei Z. The effects of 17-beta estradiol on enhancing proliferation of human bone marrow mesenchymal stromal cells in vitro. Stem Cells Dev 2011;20:925–31.10.1089/scd.2010.0125Search in Google Scholar PubMed PubMed Central

78. Dai Z, Li Y, Quarles LD, Song T, Pan W, Zhou H, Xiao Z. Resveratrol enhances proliferation and osteoblastic differentiation in human mesenchymal stem cells via ER-dependent ERK1/2 activation. Phytomedicine 2007;14:806–14.10.1016/j.phymed.2007.04.003Search in Google Scholar PubMed

79. Peltz L, Gomez J, Marquez M, Alencastro F, Atashpanjeh N, Quang T, Bach T, Zhao Y. Resveratrol exerts dosage and duration dependent effect on human mesenchymal stem cell development. PLoS One 2012;7:e37162.10.1371/journal.pone.0037162Search in Google Scholar PubMed PubMed Central

80. Klinge CM, Blankenship KA, Risinger KE, Bhatnagar S, Noisin EL, Sumanasekera WK, Zhao L, Brey DM, Keynton RS. Resveratrol and estradiol rapidly activate MAPK signaling through estrogen receptors alpha and beta in endothelial cells. J Biol Chem 2005;280:7460–8.10.1074/jbc.M411565200Search in Google Scholar PubMed

81. Picard F, Kurtev M, Chung N, Topark-Ngarm A, Senawong T, Machado De Oliveira R, Leid M, McBurney MW, Guarente L. Sirt1 promotes fat mobilization in white adipocytes by repressing PPAR-gamma. Nature 2004;429:771–6.10.1038/nature02583Search in Google Scholar PubMed PubMed Central

82. Olmos Y, Sanchez-Gomez FJ, Wild B, Garcia-Quintans N, Cabezudo S, Lamas S, Monsalve M. SirT1 regulation of antioxidant genes Is dependent on the formation of a FoxO3a/PGC-1alpha complex. Antioxid Redox Sign 2013.10.1089/ars.2012.4713Search in Google Scholar

83. Tseng PC, Hou SM, Chen RJ, Peng HW, Hsieh CF, Kuo ML, Yen ML. Resveratrol promotes osteogenesis of human mesenchymal stem cells by upregulating RUNX2 gene expression via the SIRT1/FOXO3A axis. J Bone Miner Res 2011;26:2552–63.10.1002/jbmr.460Search in Google Scholar

84. Basly JP, Marre-Fournier F, Le Bail JC, Habrioux G, Chulia AJ. Estrogenic/antiestrogenic and scavenging properties of (E)- and (Z)-resveratrol. Life Sci 2000;66:769–77.10.1016/S0024-3205(99)00650-5Search in Google Scholar

85. Bellemare V, Laberge P, Noel S, Tchernof A, Luu-The V. Differential estrogenic 17beta-hydroxysteroid dehydrogenase activity and type 12 17beta-hydroxysteroid dehydrogenase expression levels in preadipocytes and differentiated adipocytes. J Steroid Biochem Mol Biol 2009;114:129–34.10.1016/j.jsbmb.2009.01.002Search in Google Scholar PubMed

86. Hong L, Colpan A, Peptan IA, Daw J, George A, Evans CA. 17-Beta estradiol enhances osteogenic and adipogenic differentiation of human adipose-derived stromal cells. Tissue Eng 2007;13: 1197–203.10.1089/ten.2006.0317Search in Google Scholar PubMed

87. Medina-Gomez G, Gray S, Vidal-Puig A. Adipogenesis and lipotoxicity: role of peroxisome proliferator-activated receptor gamma (PPARgamma) and PPARgammacoactivator-1 (PGC1). Public Health Nutr 2007;10:1132–7.10.1017/S1368980007000614Search in Google Scholar PubMed

88. Callewaert F, Sinnesael M, Gielen E, Boonen S, Vanderschueren D. Skeletal sexual dimorphism: relative contribution of sex steroids, GH-IGF1, and mechanical loading. J Endocrinol 2010;207:127–34.10.1677/JOE-10-0209Search in Google Scholar PubMed

89. Herrmann JL, Abarbanell AM, Weil BR, Manukyan MC, Poynter JA, Wang Y, Coffey AC, Meldrum DR. Gender dimorphisms in progenitor and stem cell function in cardiovascular disease. J Cardiovasc Transl Res 2010;3:103–13.10.1007/s12265-009-9149-ySearch in Google Scholar PubMed PubMed Central

90. Chang CY, Hsuuw YD, Huang FJ, Shyr CR, Chang SY, Huang CK, Kang HY, Huang KE. Androgenic and antiandrogenic effects and expression of androgen receptor in mouse embryonic stem cells. Fertil Steril. 2006;85:Suppl 1:1195–203.10.1016/j.fertnstert.2005.11.031Search in Google Scholar PubMed

91. Crisostomo PR, Wang M, Herring CM, Morrell ED, Seshadri P, Meldrum KK, Meldrum DR. Sex dimorphisms in activated mesenchymal stem cell function. Shock (Augusta, Ga) 2006;26:571–4.10.1097/01.shk.0000233195.63859.efSearch in Google Scholar PubMed

92. Lee HJ, Teixeira J. Evidence of a role for androgens in embryonic stem cell function and differentiation. Endocrinology 2008;149:3–4.10.1210/en.2007-1417Search in Google Scholar PubMed

93. Viselli SM, Reese KR, Fan J, Kovacs WJ, Olsen NJ. Androgens alter B cell development in normal male mice. Cell Immunol 1997;182:99–104.10.1006/cimm.1997.1227Search in Google Scholar PubMed

94. Ray R, Novotny NM, Crisostomo PR, Lahm T, Abarbanell A, Meldrum DR. Sex steroids and stem cell function. Mol Med (Cambridge, Mass) 2008;14:493–501.10.2119/2008-00004.RaySearch in Google Scholar PubMed PubMed Central

95. Gupta V, Bhasin S, Guo W, Singh R, Miki R, Chauhan P, Choong K, Tchkonia T, Lebrasseur NK, Flanagan JN, Hamilton JA, Viereck JC, Narula NS, Kirkland JL, Jasuja R. Effects of dihydrotestosterone on differentiation and proliferation of human mesenchymal stem cells and preadipocytes. Mol Cell Endocrinol 2008;296:32–40.10.1016/j.mce.2008.08.019Search in Google Scholar PubMed PubMed Central

96. Huang CK, Tsai MY, Luo J, Kang HY, Lee SO, Chang C. Suppression of androgen receptor enhances the self-renewal of mesenchymal stem cells through elevated expression of EGFR. Biochim Biophys Acta 2013;1833:1222–34.10.1016/j.bbamcr.2013.01.007Search in Google Scholar PubMed PubMed Central

97. Wang M, Zhang W, Crisostomo P, Markel T, Meldrum KK, Fu XY, Meldrum DR. STAT3 mediates bone marrow mesenchymal stem cell VEGF production. J Mol Cell Cardiol 2007;42:1009–15.10.1016/j.yjmcc.2007.04.010Search in Google Scholar PubMed PubMed Central

98. Ray R, Herring CM, Markel TA, Crisostomo PR, Wang M, Weil B, Lahm T, Meldrum DR. Deleterious effects of endogenous and exogenous testosterone on mesenchymal stem cell VEGF production. Am J Physiol Regul Integr Comp Physiol 2008;294(5):R1498–503.10.1152/ajpregu.00897.2007Search in Google Scholar PubMed

99. Huang CK, Lee SO, Lai KP, Ma WL, Lin TH, Tsai MY, Luo J, Chang C. Targeting androgen receptor in bone marrow mesenchymal stem cells leads to better transplantation therapy efficacy in liver cirrhosis. Hepatology (Baltimore, Md) 2013;57:1550–63.10.1002/hep.26135Search in Google Scholar PubMed

100. Bonaccorsi L, Carloni V, Muratori M, Formigli L, Zecchi S, Forti G, Baldi E. EGF receptor (EGFR) signaling promoting invasion is disrupted in androgen-sensitive prostate cancer cells by an interaction between EGFR and androgen receptor (AR). Int J Cancer 2004;112:78–86.10.1002/ijc.20362Search in Google Scholar PubMed

101. Gibran Ali SM, Khan M, Nasir GA, Shams S, Khan SN, Riazuddin S. Nitric oxide augments mesenchymal stem cell ability to repair liver fibrosis. J Transl Med 2012;10:9.Search in Google Scholar

102. Yu J, Akishita M, Eto M, Ogawa S, Son BK, Kato S, Ouchi Y, Okabe T. Androgen receptor-dependent activation of endothelial nitric oxide synthase in vascular endothelial cells: role of phosphatidylinositol 3-kinase/akt pathway. Endocrinology 2010;151:1822–8.10.1210/en.2009-1048Search in Google Scholar PubMed

103. Singh R, Artaza JN, Taylor WE, Gonzalez-Cadavid NF, Bhasin S. Androgens stimulate myogenic differentiation and inhibit adipogenesis in C3H 10T1/2 pluripotent cells through an androgen receptor-mediated pathway. Endocrinology 2003;144:5081–8.10.1210/en.2003-0741Search in Google Scholar PubMed

104. Leskela HV, Olkku A, Lehtonen S, Mahonen A, Koivunen J, Turpeinen M, Uusitalo J, Pelkonen O, Kangas L, Selander K, Lehenkari P. Estrogen receptor alpha genotype confers interindividual variability of response to estrogen and testosterone in mesenchymal-stem-cell-derived osteoblasts. Bone 2006;39:1026–34.10.1016/j.bone.2006.05.003Search in Google Scholar PubMed

105. Feldman BJ. Glucocorticoids influence on mesenchymal stem cells and implications for metabolic disease. Pediatr Res 2009;65:249–51.10.1203/PDR.0b013e3181909c08Search in Google Scholar PubMed PubMed Central

106. Rose AJ, Vegiopoulos A, Herzig S. Role of glucocorticoids and the glucocorticoid receptor in metabolism: insights from genetic manipulations. J Steroid Biochem Mol Biol 2010;122:10–20.10.1016/j.jsbmb.2010.02.010Search in Google Scholar PubMed

107. Hong L, Sultana H, Paulius K, Zhang G. Steroid regulation of proliferation and osteogenic differentiation of bone marrow stromal cells: a gender difference. J Steroid Biochem Mol Biol 2009;114:180–5.10.1016/j.jsbmb.2009.02.001Search in Google Scholar PubMed PubMed Central

108. Xiao Y, Peperzak V, van Rijn L, Borst J, de Bruijn JD. Dexamethasone treatment during the expansion phase maintains stemness of bone marrow mesenchymal stem cells. J Tissue Eng Regen Med 2010;4:374–86.10.1002/term.250Search in Google Scholar PubMed

109. Liu Q, Cen L, Zhou H, Yin S, Liu G, Liu W, Cao Y, Cui L The role of the extracellular signal-related kinase signaling pathway in osteogenic differentiation of human adipose-derived stem cells and in adipogenic transition initiated by dexamethasone. Tissue Eng Part A 2009;15:3487–97.10.1089/ten.tea.2009.0175Search in Google Scholar PubMed

110. Kerachian MA, Seguin C, Harvey EJ. Glucocorticoids in osteonecrosis of the femoral head: a new understanding of the mechanisms of action. J Steroid Biochem Mol Biol 2009;114:121–8.10.1016/j.jsbmb.2009.02.007Search in Google Scholar PubMed PubMed Central

111. Tan G, Kang PD, Pei FX. Glucocorticoids affect the metabolism of bone marrow stromal cells and lead to osteonecrosis of the femoral head: a review. Chin Med J 2012;125:134–9.Search in Google Scholar

112. Campbell JE, Peckett AJ, D′Souza A M, Hawke TJ, Riddell MC. Adipogenic and lipolytic effects of chronic glucocorticoid exposure. Am J Physiol Cell Physiol 2011;300:C198–209.10.1152/ajpcell.00045.2010Search in Google Scholar PubMed

113. Stewart PM. Tissue-specific Cushing′s syndrome, 11beta-hydroxysteroid dehydrogenases and the redefinition of corticosteroid hormone action. Eur J Endocrinol/European Federation of Endocrine Societies. 2003;149:163–8.10.1530/eje.0.1490163Search in Google Scholar PubMed

114. Vacanti NM, Cheng H, Hill PS, Guerreiro JD, Dang TT, Ma M, Watson S, Hwang NS, Langer R, Anderson DG. Localized delivery of dexamethasone from electrospun fibers reduces the foreign body response. Biomacromolecules 2012;13:3031–8.10.1021/bm300520uSearch in Google Scholar PubMed PubMed Central

115. Gottlieb NL, Riskin WG. Complications of local corticosteroid injections. J Am Med Assoc 1980;243:1547–8.10.1001/jama.1980.03300410035021Search in Google Scholar

116. Zhang J, Keenan C, Wang JH. The effects of dexamethasone on human patellar tendon stem cells: implications for dexamethasone treatment of tendon injury. J Orthopaed Res 2013;31:105–10.10.1002/jor.22193Search in Google Scholar PubMed PubMed Central

117. Nuzzi R, Gunetti M, Rustichelli D, Roagna B, Fronticelli Bardelli F, Fagioli F, Ferrero I. Effect of in vitro exposure of corticosteroid drugs, conventionally used in amd treatment, on mesenchymal stem cells. Stem Cells Int 2012;2012:946090.10.1155/2012/946090Search in Google Scholar PubMed PubMed Central

118. Prosper F, Verfaillie CM. [Adult stem cells]. An Sist Sanit Navar. 2003;26:345–56.Search in Google Scholar

119. Alison MR, Islam S. Attributes of adult stem cells. J Pathol 2009;217:144–60.10.1002/path.2498Search in Google Scholar PubMed

120. da Silva Meirelles L, Chagastelles PC, Nardi NB. Mesenchymal stem cells reside in virtually all post-natal organs and tissues. J Cell Science 2006;119:2204–13.10.1242/jcs.02932Search in Google Scholar PubMed

121. Liang CZ, Li H, Tao YQ, Zhou XP, Yang ZR, Xiao YX, Li FC, Han B, Chen QX. Dual delivery for stem cell differentiation using dexamethasone and bFGF in/on polymeric microspheres as a cell carrier for nucleus pulposus regeneration. J Mater Sci Mater Med 2012;23:1097–107.10.1007/s10856-012-4563-0Search in Google Scholar PubMed

Received: 2013-4-26
Accepted: 2013-5-14
Published Online: 2013-07-05
Published in Print: 2013-08-01

©2013 by Walter de Gruyter Berlin Boston

Downloaded on 4.6.2024 from https://www.degruyter.com/document/doi/10.1515/hmbci-2013-0016/html
Scroll to top button