Skip to main content
Log in

Inverse Problems for Diffusion Equation with Fractional Dzherbashian-Nersesian Operator

  • Research Paper
  • Published:
Fractional Calculus and Applied Analysis Aims and scope Submit manuscript

Abstract

Fractional Dzherbashian-Nersesian operator is considered and three famous fractional order derivatives named after Riemann-Liouville, Caputo and Hilfer are shown to be special cases of the earlier one. The expression for Laplace transform of fractional Dzherbashian-Nersesian operator is constructed. Inverse problems of recovering space dependent and time dependent source terms of a time fractional diffusion equation with involution and involving fractional Dzherbashian-Nersesian operator are considered. The results on existence and uniqueness for the solutions of inverse problems are established. The results obtained here generalize several known results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A.R. Aftabizadeh, Y.K. Huang, J. Wiener, Bounded solutions for differential equations with reflection of the argument. J. Math. Anal. Appl. 135, No 1 (1988), 31–37

    Article  MathSciNet  Google Scholar 

  2. M. Ali, S. Aziz, S.A. Malik, Inverse problem for a multi-term fractional differential equation. Fract. Calc. Appl. Anal. 23, No 3 (2020), 799–821; DOI:10.1515/fca-2020-0040; https://www.degruyter.com/journal/key/fca/23/3/html

    Article  MathSciNet  Google Scholar 

  3. M. Ali, S. Aziz, S.A. Malik, Inverse source problem for a space-time fractional diffusion equation. Fract. Calc. Appl. Anal. 21, No 3 (2018), 844–863; DOI:10.1515/fca-2018-0045; https://www.degruyter.com/journal/key/fca/21/3/html

    Article  MathSciNet  Google Scholar 

  4. M. Ali, S. Aziz, S.A. Malik, Inverse problem for a space-time fractional diffusion equation: Application of fractional Sturm-Liouville operator. Math. Meth. Appl. Sci. 41, No 7 (2018), 2733–2747; DOI:10.1002/mma.4776

    Article  MathSciNet  Google Scholar 

  5. M. Ali, S.A. Malik, An inverse problem for a family of two parameters time fractional diffusion equations with nonlocal boundary conditions. Math. Meth. Appl. Sci. 40, No 18 (2017), 7737–7748; DOI:10.1002/mma.4558

    Article  MathSciNet  Google Scholar 

  6. M. Ali, S.A. Malik, An inverse problem for a family of time fractional diffusion equations. Inverse Probl. Sci. Eng. 25, No 9 (2017), 1299–1322; DOI:10.1080/17415977.2016.1255738

    Article  MathSciNet  Google Scholar 

  7. N. Al-Salti, S. Kerbal, M. Kirane, Initial-boundary value problems for a time-fractional differential equation with involution perturbation. Math. Model. Nat. Phenom. 14, No 3 (2019), # 312; DOI:10.1051/mmnp/2019014

    Google Scholar 

  8. A.A. Andreev, Analogs of classical boundary value problems for a second-order differential equation with deviating argument. Differ. Equ. 40, No 8 (2004), 1192–1194

    Article  MathSciNet  Google Scholar 

  9. S. Aziz, S.A. Malik, Identification of an unknown source term for a time fractional fourth order parabolic equation. Electron. J. Differ. Equ. 2016 (2016), # 293, 1–20

    Article  MathSciNet  Google Scholar 

  10. M. Caputo, Linear models of dissipation whose Q is almost frequency independent II. Geophys J Intl. 13, No 5 (1967), 529–539

    Article  Google Scholar 

  11. M.M. Dzherbashian, A.B. Nersesian, Fractional derivatives and Cauchy problem for differential equations of fractional order. Fract. Calc. Appl. Anal. 23, No 6 (2020), 1810–1836; DOI:10.1515/fca-2020-0090; https://www.degruyter.com/journal/key/fca/23/6/html

    Article  MathSciNet  Google Scholar 

  12. M.M. Dzhrbashyan, A.B. Nersesyan, Fractional derivatives and the Cauchy problem for fractional differential equations. Izv. Akad. Nauk Armyan. SSR. 3, No 1 (1968), 3–29

    Google Scholar 

  13. R. Gorenflo, A.A. Kilbas, F. Mainardi, S.V. Rogosin, Mittag–Leffler Functions, Related Topics and Applications Springer, Berlin-Heidelberg (2014), 2nd Ed (2020)

    MATH  Google Scholar 

  14. A.A. Kilbas, H.M. Srivastava, J.J. Trujillo, Theory and Applications of Fractional Differential Equations North-Holland Mathematics Studies, Elsevier Science B.V, Amsterdam (2006)

    MATH  Google Scholar 

  15. M. Kirane, N. Al-Salti, Inverse problems for a nonlocal wave equation with an involution perturbation. J. Nonlinear Sci. Appl. 9 (2016), 1243–1251

    Article  MathSciNet  Google Scholar 

  16. Y. Luchko, Fractional derivatives and the fundamental theorem of fractional calculus. Fract. Calc. Appl. Anal. 23, No 4 (2020), 939–966; DOI:10.1515/fca-2020-0049; https://www.degruyter.com/journal/key/fca/23/4/html

    Article  MathSciNet  Google Scholar 

  17. R. Metzler, S. Schick, H.G. Kilian, T.F. Nonnenmacher, Relaxation in filled polymers: A fractional calculus approach. J. Chem. Phys. 103, No 16 (1995), 7180–7186

    Article  Google Scholar 

  18. M.D. Ortigueira, J.A. Tenreiro Machado, What is a fractional derivative. J. Comput. Phys. 293 (2015), 4–13

    Article  MathSciNet  Google Scholar 

  19. I. Podlubny, Fractional Differential Equations Academic Press, San Diego (1999)

    MATH  Google Scholar 

  20. J. Sabatier, O.P. Agrawal, J.A.T. Machado, Advances in Fractional Calculus: Theoretical Developments and Applications in Physics and Engineering Springer, Dordrecht (2007), 323–332

    Book  Google Scholar 

  21. S.G. Samko, A.A. Kilbas, O.I. Marichev, Fractional Integrals and Derivatives: Theory and Applications Gordon and Breach Science Publishers, Amsterdam (1993)

    MATH  Google Scholar 

  22. B.T. Torebek, R. Tapdigoglu, Some inverse problems for the nonlocal heat equation with Caputo fractional derivative. Math. Meth. Appl. Sci. 40, No 18 (2017), 6468–6479; DOI:10.1002/mma.4468

    Article  MathSciNet  Google Scholar 

  23. V.E. Tarasov, Leibniz rule and fractional derivatives of power functions. J. Comput. Nonlinear Dyn. 11, No 3 (2016), # 031014

    Google Scholar 

  24. V.E. Tarasov, No nonlocality. No fractional derivative. Commun. Nonlinear Sci. 62 (2018), 157–163; DOI:10.1016/j.cnsns.2018.02.019

    Article  MathSciNet  Google Scholar 

  25. V.E. Tarasov, Local fractional derivatives of differentiable functions are integer-order derivatives or zero. Intl. J. Appl. Comput. Math. 2, No 2 (2016), 195–201; DOI:10.1007/s40819-015-0054-6

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Salman A. Malik.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ahmad, A., Ali, M. & Malik, S.A. Inverse Problems for Diffusion Equation with Fractional Dzherbashian-Nersesian Operator. Fract Calc Appl Anal 24, 1899–1918 (2021). https://doi.org/10.1515/fca-2021-0082

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1515/fca-2021-0082

MSC 2010

Key Words and Phrases

Navigation