Skip to main content
Log in

AsymptotIc Behavior of Solutions of Fractional Differential Equations with Hadamard Fractional Derivatives

  • Research Paper
  • Published:
Fractional Calculus and Applied Analysis Aims and scope Submit manuscript

Abstract

The asymptotic behaviour of solutions in an appropriate space is discussed for a fractional problem involving Hadamard left-sided fractional derivatives of different orders. Reasonable sufficient conditions are determined ensuring that solutions of fractional differential equations with nonlinear right hand sides approach a logarithmic function as time goes to infinity. This generalizes and extends earlier results on integer order differential equations to the fractional case. Our approach is based on appropriate desingularization techniques and generalized versions of Gronwall-Bellman inequality. It relies also on a kind of Hadamard fractional version of l’Hopital’s rule which we prove here.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D. Babusci, G. Dattoli, D. Sacchetti, The Lamb–Bateman integral equation and the fractional derivatives. Fract. Calc. Appl. Anal. 14, No 2 (2011), 317–320; 10.2478/s13540-011-0019-3; https://www.degruyter.com/journal/key/FCA/14/2/html

    Article  MathSciNet  Google Scholar 

  2. D. Babusci, G. Dattoli, D. Sacchetti, Integral equations, fractional calculus and shift operators. arXiv:1007.5211v1 (2010).

    Google Scholar 

  3. D. Băleanu, O.G. Mustafa, R.P. Agarwal, On the solution set for a class of sequential fractional differential equations. J. Phys. A Math. Theor. 43, No 38 (2010), 1–10.

    Article  MathSciNet  Google Scholar 

  4. D. Băleanu, O.G. Mustafa, R.P. Agarwal, Asymptotically linear solutions for some linear fractional differential equations. Abstr. Appl. Anal. 2010, No 10 (2010), 1–8.

    MathSciNet  MATH  Google Scholar 

  5. D. Băleanu, O.G. Mustafa, R.P. Agarwal, Asymptotic integration of (1 + α)-order fractional differential equations. Comput. Math. with Appl. 62, No 3 (2011), 1492–1500.

    Article  MathSciNet  Google Scholar 

  6. D. Băleanu, R.P. Agarwal, O.G. Mustafa, M. Coşulschi, Asymptotic integration of some nonlinear differential equations with fractional time derivative. J. Phys. A Math. Theor. 44, No 5 (2011), 1–9.

    Article  MathSciNet  Google Scholar 

  7. D.S. Cohen, The asymptotic behavior of a class of nonlinear differential equations. Proc. Amer. Math. Soc. 18, No 4 (1967), 607–609.

    Article  MathSciNet  Google Scholar 

  8. A. Constantin, On the asymptotic behavior of second order nonlinear differential equations. Rend. Mat. Appl. 13, No 7 (1993), 627–634.

    MathSciNet  MATH  Google Scholar 

  9. A. Constantin, On the existence of positive solutions of second order differential equations. Ann. di Mat. Pura ed Appl. 184, No 2 (2005), 131–138.

    Article  MathSciNet  Google Scholar 

  10. F.M. Dannan, Integral inequalities of Gronwall-Bellman-Bihari type and asymptotic behavior of certain second order nonlinear differential equations. J. Math. Anal. Appl. 108, No 1 (1985), 151–164.

    Article  MathSciNet  Google Scholar 

  11. G. de Barra, Measure Theory and Integration. Woodhead Publishing Limited, Cambridge (2003).

    Book  Google Scholar 

  12. R. Garra, F. Polito, On some operators involving Hadamard derivatives. Integr. Transf. Spec. Funct. 24, No 10 (2013), 773–782.

    Article  MathSciNet  Google Scholar 

  13. W.G. Glöckle, T.F. Nonnenmacher, A fractional calculus approach to selfsimilar protein dynamics. Biophys. J. 68, No 1 (1995), 46–53.

    Article  Google Scholar 

  14. A. Iomin, V. Mendez, W. Horsthemke, Fractional Dynamics in Comb-Like Structures. World Scientific Publishing Co. Pte. Ltd, Singapore (2018).

    Book  Google Scholar 

  15. M.D. Kassim, K.M. Furati, N.-E. Tatar, Asymptotic behavior of solutions to nonlinear fractional differential equations. Math. Model Anal. 21, No 5 (2016), 610–629.

    Article  MathSciNet  Google Scholar 

  16. M.D. Kassim, K.M. Furati, N.-E. Tatar, Asymptotic behavior of solutions to nonlinear initial-value fractional differential problems. Electron. J. Differ. Equ. 2016, No 291 (2016), 1–14.

    MathSciNet  MATH  Google Scholar 

  17. M.D. Kassim, N.-E. Tatar, Stability of logarithmic type for a Hadamard fractional differential problem. J. Pseudodiffer. Oper. Appl. 11, No 1 (2020), 447–466.

    Article  MathSciNet  Google Scholar 

  18. M.D. Kassim, N.-E. Tatar, Convergence of solutions of fractional differential equations to power-type functions. Electron. J. Differ. Equ. 2020, No 111 (2020), 1–14.

    MathSciNet  MATH  Google Scholar 

  19. A.A. Kilbas, H.M. Srivastava, J.J. Trujillo, Theory and Applications of Fractional Differential Equations. Elsevier, Amsterdam (2006).

    MATH  Google Scholar 

  20. A.A. Kilbas, J.J. Trujillo, Differential equations of fractional order: methods results and problem–I. Appl. Anal. 78, No 1-2 (2001), 153–192.

    Article  MathSciNet  Google Scholar 

  21. T. Kusano, W.F. Trench, Global existence of second order differential equations with integrable coefficients. J. London Math. Soc. 31, No 1 (1985), 478–486.

    Article  MathSciNet  Google Scholar 

  22. T. Kusano, W.F. Trench, Existence of global solutions with prescribed asymptotic behavior for nonlnear ordinary differential equations. Ann. di Mat. Pura Appl. 142, No 1 (1985), 381–392.

    Article  Google Scholar 

  23. Y. Liang, S. Wang, W. Chen, Z. Zhou, R.L. Magin, A survey of models of ultraslow diffusion in heterogeneous materials. Appl. Mech. Rev. 71, No 4 (2019), 1–16.

    Article  Google Scholar 

  24. O. Lipovan, On the asymptotic behaviour of the solutions to a class of second order nonlinear differential equations. Glasgow Math. J. 45, No 1 (2003), 179–187.

    Article  MathSciNet  Google Scholar 

  25. R.L. Magin, O. Abdullah, D. Băleanu, J.Z. Xiaohong, Anomalous diffusion expressed through fractional order differential operators in the Bloch-Torrey equation. J. Magn. Reson. 190, No 2 (2008), 255–270.

    Article  Google Scholar 

  26. M. Medved, On the asymptotic behavior of solutions of nonlinear differential equations of integer and also of non-integer order. Electron. J. Qual. Theory Differ. Equ. 2012, No 10 (2012), 1–9.

    MATH  Google Scholar 

  27. M. Medved, Asymptotic integration of some classes of fractional differential equations. Tatra Mt. Math. Publ. 54, No 1 (2013), 119–132.

    MathSciNet  MATH  Google Scholar 

  28. M. Medved, M. Pospišsil, Asymptotic integration of fractional differential equations with integrodifferential right-hand side. Math. Model. Anal. 20, No 4 (2015), 471–489.

    Article  MathSciNet  Google Scholar 

  29. R. Metzler, W. Schick, H.G. Kilian, T.F. Nonennmacher, Relaxation in filled polymers: A fractional calculus approach. J. Chem. Phys. 103, No 16 (1995), 7180–7186.

    Article  Google Scholar 

  30. O.G. Mustafa, Y.V. Rogovchenko, Global existence of solutions with prescribed asymptotic behavior for second-order nonlinear differential equations. Nonlinear Anal. Theory Methods Appl. 51, No 2 (2002), 339–368.

    Article  MathSciNet  Google Scholar 

  31. B.G. Pachpatte, Inequalities for Differential and Integral Equations. Academic Press, San-Diego (1998).

    MATH  Google Scholar 

  32. I. Podlubny, Fractional Differential Equations. Academic Press, San-Diego (1999).

    MATH  Google Scholar 

  33. Y.V. Rogovchenko, On asymptotics behavior of solutions for a class of second order nonlinear differential equations. Collect. Math. 49, No 1 (1998), 113–120.

    MathSciNet  MATH  Google Scholar 

  34. S.P. Rogovchenko, Y.V. Rogovchenko, Asymptotics of solutions for a class of second order nonlinear differential equations. Univ. Iagellonicae Acta Math. 38, No 1 (1998), 157–164.

    MathSciNet  MATH  Google Scholar 

  35. J. Sabatier, O.P. Agrawal, J.A. Tenreiro Machado, Advances in Fractional Calculus: Theoretical Developments and Applications in Physics and Engineering. Springer, Dordrecht (2007).

    Book  Google Scholar 

  36. S.G. Samko, A.A. Kilbas, O.I. Marichev, Fractional Integrals and Derivatives: Theory and Applications. Gordon and Breach Science Publishers, Switzerland (1993).

    MATH  Google Scholar 

  37. J. Tong, The asymptotic behavior of a class of nonlinear differential equations of second order. Proc. Amer. Math. Soc. 84, No 2 (1982), 235–236.

    Article  MathSciNet  Google Scholar 

  38. W.F. Trench, On the asymptotic behavior of solutions of second order linear differential equations. Proc. Amer. Math. Soc. 14, No 1 (1963), 12–14.

    Article  MathSciNet  Google Scholar 

  39. P. Waltman, On the asymptotic behavior of solutions of a nonlinear equation. Proc. Amer. Math. Soc. 15, No 6 (1964), 918–923.

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammed D. Kassim.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kassim, M.D., Tatar, Ne. AsymptotIc Behavior of Solutions of Fractional Differential Equations with Hadamard Fractional Derivatives. Fract Calc Appl Anal 24, 483–508 (2021). https://doi.org/10.1515/fca-2021-0021

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1515/fca-2021-0021

MSC 2010

Key Words and Phrases

Navigation