Skip to main content
Log in

Existence and Controllability for Nonlinear Fractional Differential Inclusions with Nonlocal Boundary Conditions And Time-Varying Delay.

  • Published:
Fractional Calculus and Applied Analysis Aims and scope Submit manuscript

Abstract

This paper discusses the existence and controllability of a class of fractional order evolution inclusions with time-varying delay. In the weak topology setting we establish the existence of solutions. Then the controllability of this system with a nonlocal condition is established by applying the Glicksberg-Ky Fan fixed point theorem. As an application, nonlocal problems of a fractional reaction-diffusion equation with a discontinuous nonlinear term is examined.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R.P. Agarwal, M. Benchohra, and S. Hamani, A survey on existence results for boundary value problems of nonlinear fractional differential equations and inclusions. Acta Applicandae Mathematicae 109, No 3 (2010), 973–1033.

    Article  MathSciNet  Google Scholar 

  2. E. Ait Dads, M. Benchohra, and S. Hamani, Impulsive fractional differential inclusions involving fractional derivative. Fract. Calc. Appl. Anal. 12, No 1 (2009), 15–38; at http://www.math.bas.bg/complan/fcaa.

    MathSciNet  MATH  Google Scholar 

  3. K. Balachandran, J. Kokila, On the controllability of fractional dynamical systems. Int. J. Appl. Math. Comput. Sci. 12, No 3 (2012), 523–531.

    Article  MathSciNet  Google Scholar 

  4. K. Balachandran, J.Y. Park, J.J. Trujillo, Controllability of nonlinear fractional dynamical systems. Nonlinear Anal. Theory Methods Appl. 75, No 4 (2012), 1919–1926.

    Article  MathSciNet  Google Scholar 

  5. I. Benedetti, L. Malaguti, and V. Taddei, Semilinear differential inclusions via weak topologies. J. Math. Anal. Appl. 368 No 1 (2010), 90–102.

    Article  MathSciNet  Google Scholar 

  6. I. Benedetti, L. Malaguti, and V. Taddei, Nonlocal semilinear evolution equations without strong compactness: theory and applications. Boundary Value Problems 2013, No 1 (2013), 1–18.

    Article  MathSciNet  Google Scholar 

  7. I. Benedetti, V. Obukhovskii, V. Taddei, Controllability for systems governed by semilinear evolution inclusions without compactness. Nonlinear Differential Equations and Applications NoDEA 21, No 6 (2014), 795–812.

    Article  MathSciNet  Google Scholar 

  8. I. Benedetti, V. Obukhovskii, V. Taddei, On noncompact fractional order differential inclusions with generalized boundary condition and impulses in a Banach space. Journal of Function Spaces 2015, No 1 (2015), 1–10.

    Article  MathSciNet  Google Scholar 

  9. M. Bettayeb, S. Djennoune, New results on the controllability and observability of fractional dynamical systems. J. Vib. Control 14, No 14 (2008), 1531–1541.

    Article  MathSciNet  Google Scholar 

  10. S. Bochner, A.E. Taylor, Linear functionals on certain spaces of abstractly-valued functions. Ann. Math. 39, No 4 (1938), 913–944.

    Article  MathSciNet  Google Scholar 

  11. G. Bonanno, R. Rodríguez-López, and S. Tersian, Existence of solutions to boundary value problem for impulsive fractional differential equations. Fract. Calc. Appl. Anal. 17, No 3 (2014), 717–744; DOI:10.2478/s13540-014-0196-y; https://www.degruyter.com/view/j/fca.2014.17.issue-3/issue-files/fca.2014.17.issue-3.xml.

    Article  MathSciNet  Google Scholar 

  12. H. Brezis, Analyse fonctionnelle Theorie et applications. Masson Editeur, Paris, France (1983).

    MATH  Google Scholar 

  13. L. Byszewski, Theorems about the existence and uniqueness of solutions of semilinear evolution nonlocal Cauchy problems. J. Math. Anal. Appl. 162, No 2 (1991), 494–505.

    Article  MathSciNet  Google Scholar 

  14. A. Cernea, On a fractional differential inclusion with fourpoint integral boundary conditions. Surveys in Mathematics and its Applications 8 (2013), 115–124.

    MathSciNet  MATH  Google Scholar 

  15. A. Cernea, On some fractional differential inclusions with random parameters. Fract. Calc. Appl. Anal. 21, No 1 (2018), 190–199; DOI:10.1515/fca-2018-0012; https://www.degruyter.com/view/j/fca.2014.17.issue-3/issue-files/fca.2014.17.issue-3.xml.

    Article  MathSciNet  Google Scholar 

  16. Y.K. Chang, P. Aldo, P. Rodrigo, Approximate controllability for fractional differential equations of Sobolev type via properties on resolvent operators. Fract. Calc. Appl. Anal. 20, No 4 (2017), 963–987; DOI:10.1515/fca-2017-0050; https://www.degruyter.com/view/j/fca.2017.20.issue-4/issue-files/fca.2017.20.issue-4.xml.

    Article  MathSciNet  Google Scholar 

  17. Y. Chen, H.S. Ahn, D. Xue, Robust controllability of interval fractional order linear time invariant systems. Signal Process 86, No 10 (2006), 2794–2802.

    Article  Google Scholar 

  18. Y. Cheng, Existence of solutions for a class of nonlinear evolution inclusions with nonlocal conditions. J. Opti. Theo. Appl. 162, No 1 (2014), 13–33.

    Article  MathSciNet  Google Scholar 

  19. Sh. Das, Functional Fractional Calculus. Springer-Verlag Berlin Heidelberg (2011).

    Book  Google Scholar 

  20. N. Dunford and J.T. Schwartz, Linear Operators. John Wiley and Sons, New York (1988).

    MATH  Google Scholar 

  21. Ky Fan, Fixed point and minimax theorems in locally convex topological linear spaces. Proc. Nat. Acad. Sci. U. S. A. 38, No 2 (1952), 121–126.

    Article  MathSciNet  Google Scholar 

  22. H. Frankowska, F. Rampazzo, Filippov’s and Filippov-Wa?zewski’s theorems on closed domains. J. Differential Equations 161, No 2 (2000), 449–478.

    Article  MathSciNet  Google Scholar 

  23. L.I. Glicksberg, A further generalization of the Kakutani fixed theorem with application to Nash equilibrium points. Proc. Amer. Math. Soc. 3, No 1 (1952), 170–174.

    MathSciNet  MATH  Google Scholar 

  24. J. Henderson and A. Ouahab, A Filippo’s theorem, some existence results and the compactness of solution sets of impulsive fractional order differential inclusions. Mediterranean Journal of Mathematics 9, No 3 (2012), 453–485.

    Article  MathSciNet  Google Scholar 

  25. A.G. Ibrahim, N. Almoulhim, Mild solutions for nonlocal fractional semilinear functional differential inclusions involving Caputo derivative. Le Matematiche 69, No 1 (2014), 125–148.

    MathSciNet  MATH  Google Scholar 

  26. M. Kamenskii, V. Obukhovskii, and P. Zecca, Condensing Multivalued Maps and Semilinear Differential Inclusions in Banach Spaces. Walter de Gruyter, Berlin, Germany (2001).

    Book  Google Scholar 

  27. L.V. Kantorovich and G.P. Akilov, Functional Analysis. Pergamon Press, Oxford, UK (1982).

    MATH  Google Scholar 

  28. F. Li, J. Liang, H. K. Xu, Existence of mild solutions for fractional integrodifferential equations of Sobolev type with nonlocal conditions. J. Math. Anal. Appl. 391, No 2 (2012), 510–525.

    Article  Google Scholar 

  29. C.A. Monje, Y.Q. Chen, B. Vinagre, X. Xue, V. Feliu, Fractionalorder Systems and Controls: Fundamentals and Applications. Springer, London (2010).

    Book  Google Scholar 

  30. S.K. Ntouyas, Boundary value problems for nonlinear fractional differential equations and inclusions with nonlocal and fractional integral boundary conditions. Opuscula Mathematica 33, No 1 (2013), 117–138.

    Article  MathSciNet  Google Scholar 

  31. S.K. Ntouyas and D. O’Regan, Existence results for semilinear neutral functional differential inclusions with nonlocal conditions. Diff. Equ. Appl. 1, No 1 (2009), 41–65.

    MathSciNet  MATH  Google Scholar 

  32. I. Petráŝ, Fractional-Order Nonlinear Systems, Higher Education Press, Beijing and Springer-Verlag, Berlin - Heidelberg (2011).

    Book  Google Scholar 

  33. J. Wang, M. Fečkan, Y. Zhou, Controllability of Sobolev type fractional evolution systems. Dynamics of Partial Differential Equations 11, No 1 (2014), 71–87.

    Article  MathSciNet  Google Scholar 

  34. J. Wang, Y. Zhou, Existence and controllability results for fractional semilinear differential inclusions. Nonlinear Anal. RWA 12, No 6 (2011), 3642–3653.

    Article  MathSciNet  Google Scholar 

  35. J.R. Wang, Y. Zhou, M. Fečkan, Abstract Cauchy problem for fractional differential equations. Nonlinear Dyn 71, No 4 (2013), 685–700.

    Article  MathSciNet  Google Scholar 

  36. R.N. Wang, D.H. Chen, T.J. Xiao, Abstract fractional Cauchy problems with almost sectorial operators. J. Differ. Equ. 252, No 1 (2012), 202–235.

    Article  MathSciNet  Google Scholar 

  37. R.N. Wang, T.J. Xiao, J. Liang, A note on the fractional Cauchy problems with nonlocal initial conditions. Appl. Math. Lett. 24, No 8 (2011), 1435–1442.

    Article  MathSciNet  Google Scholar 

  38. Z. Yan, Controllability of fractional-order partial neutral functional integrodifferential inclusions with infinite delay. J. Franklin Instit. 348, No 8 (2011), 2156–2173.

    Article  MathSciNet  Google Scholar 

  39. Y. Zhou, F. Jiao, J. Pecaric, On the Cauchy problem for fractional functional differential equations in Banach spaces. Topol. Methods Nonlinear Anal. 42, No 1 (2014), 119–136.

    Google Scholar 

  40. Y. Zhou, J.R. Wang, L. Zhang, Basic Theory of Fractional Differential Equations. World Scientific, Singapore (2016).

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yi Cheng.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cheng, Y., Agarwal, R.P. & Regan, D.O. Existence and Controllability for Nonlinear Fractional Differential Inclusions with Nonlocal Boundary Conditions And Time-Varying Delay.. FCAA 21, 960–980 (2018). https://doi.org/10.1515/fca-2018-0053

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1515/fca-2018-0053

MSC 2010

Key Words and Phrases

Navigation