Skip to main content
Log in

A Convergent Algorithm for Solving Higher-Order Nonlinear Fractional Boundary Value Problems

  • Research Paper
  • Published:
Fractional Calculus and Applied Analysis Aims and scope Submit manuscript

Abstract

We present a numerical algorithm for solving nonlinear fractional boundary value problems of order n, n   N. The Bernstein polynomials (BPs) are redefined in a fractional form over an arbitrary interval [a, b]. Theoretical results related to the ractional Bernstein polynomials (FBPs) are proven. The well-known shooting technique is extended for the numerical treatment of nonlinear fractional boundary value problems of arbitrary order. The initial value problems were solved using a collocation method with collocation points at the location of the local maximum of the FBPs. Several examples are discussed to illustrate the efficiency and accuracy of the present scheme.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. R. Abu-Saris, Q.M. Al-Mdallal, On the asymptotic stability of linear system of fractional-order difference equations. Fract. Calc. Appl. Anal. 416, No 3 (2013), 613–629; DOI: 10.2478/s13540-013-0039-2; http://www.degruyter.com/view/j/fca.2013.16.issue-3/issue-files/fca.2013.16.issue-3.xml.

    MathSciNet  MATH  Google Scholar 

  2. E. Ahmed, A.S. Elgazzar, On fractional order differential equations model for nonlocal epidemics. Physica A: Statistical Mechanics and Its Applications 379, No 2 (2007), 607–614.

    MathSciNet  Google Scholar 

  3. S. Abbasbandy, A. Shirzadi, Homotopy analysis method for multiple solutions of the fractional Sturm-Liouville problems. Numerical Algorithms 54, No 4 (2010), 521–532.

    MathSciNet  MATH  Google Scholar 

  4. M. Alipour, D. Baleanu, Approximate analytical solution for nonlinear system of fractional differential equations by BPs operational matrices. Advances in Mathematical Physics 2013 (2013), ID 954015.

  5. F.M. Allan, M.I. Syam, On the analytic solutions of the nonhomogeneous Blasius problem. J. of Computational and Applied Mathematics 182, No 2 (2005), 362–371.

    MathSciNet  MATH  Google Scholar 

  6. Q.M. Al-Mdallal, On the numerical solution of fractional Sturm- Liouville problems. International J. of Computer Mathematics 87, No 12 (2010), 2837–2845.

    MathSciNet  MATH  Google Scholar 

  7. Q.M. Al-Mdallal, M.I. Syam, An efficient method for solving non-linear singularly perturbed two points boundary-value problems of fractional order. Commun. in Nonlinear Sci. and Numer. Simulation 17, No 6 (2012), 2299–2308.

    MathSciNet  MATH  Google Scholar 

  8. Q.M. Al-Mdallal, M.I. Syam, M.N. Anwar, A collocation-shooting method for solving fractional boundary value problems. Commun. in Nonlinear Sci. and Numer. Simulation 15, No 12 (2010), 3814–3822.

    MathSciNet  MATH  Google Scholar 

  9. R.L. Bagley, P.J. Torvik, On the appearance of the fractional derivative in the behavior of real materials. J. of Applied Mechanics 51, No 2 (1984), 294–298.

    MATH  Google Scholar 

  10. A.H. Bhrawy, Y.A. Alhamed, D. Baleanu, A.A. Al-Zahrani, New spectral techniques for systems of fractional differential equations using fractional-order generalized Laguerre orthogonal functions. Fract. Calc. Appl. Anal. 417, No 4 (2014), 1137–1157; DOI: 10.2478/s13540-014-0218-9; http://www.degruyter.com/view/j/fca.2014.17.issue-4/issue-files/fca.2014.17.issue-4.xml.

    MathSciNet  MATH  Google Scholar 

  11. R.G. Bartle, D.R. Sherbert, Introduction to Real Analysis. Wiley, New York (1992).

    MATH  Google Scholar 

  12. H. Beyer, S. Kempfle, Definition of physically consistent damping laws with fractional derivatives. ZAMM - J. of Applied Math. and Mechanics / Zeitschrift für Angewandte Mathematik und Mechanik 75, No 8 (1995), 623–635.

    MathSciNet  MATH  Google Scholar 

  13. J. Chen, F. Liu, V. Anh, I. Turner, The fundamental and numerical solutions of the Riesz space fractional reaction-dispersion equation. The ANZIAM Journal 50, No 01 (2008), 45–57.

    MathSciNet  MATH  Google Scholar 

  14. K. Diethelm, An algorithm for the numerical solution of differential equations of fractional order. Electronic Trans. on Numerical Analysis 5, No 1 (1997), 1–6.

    MathSciNet  MATH  Google Scholar 

  15. K. Diethelm, N.J. Ford, A.D. Freed, A predictor-corrector approach for the numerical solution of fractional differential equations. Nonlinear Dynamics 29, No 1–4 (2002), 3–22.

    MathSciNet  MATH  Google Scholar 

  16. X.L. Ding, Y.L. Jiang, Analytical solutions for the multi-term time- space fractional advection-diffusion equations with mixed boundary conditions. Nonlinear Analysis: Real World Applications 14, No 2 (2013), 1026–1033.

    MathSciNet  MATH  Google Scholar 

  17. V.S. Ertürk, Computing eigenelements of Sturm-Liouville problems of fractional order via fractional differential transform method. Mathematical and Computational Applications 16, No 3 (2011), 712–720.

    MathSciNet  MATH  Google Scholar 

  18. S. Esmaeili, G. Milovanovi´c, Nonstandard Gauss-Lobatto quadrature approximation to fractional derivatives. Fractional Calculus and Applied Analysis 417, No 4 (2014), 1075–1099; DOI: 10.2478/s13540-014-0215-z; http://www.degruyter.com/view/j/fca.2014.17.issue-4/issue-files/fca.2014.17.issue-4.xml.

    MathSciNet  MATH  Google Scholar 

  19. S. Esmaeili, M. Shamsi, Y. Luchko, Numerical solution of fractional differential equations with a collocation method based on Müntz polynomials. Computers and Mathematics with Applications 62, No 3 (2011), 918–929.

    MathSciNet  MATH  Google Scholar 

  20. R. Gorenflo, R.F. Mainardi, G. Pagnini, P. Paradisi, Discrete random walk models for space-time fractional diffusion. Chemical Physics 284, No 1 (2002), 521–541.

    MATH  Google Scholar 

  21. M.A. Hajji, Q.M. Al-Mdallal, F.M. Allan, An efficient algorithm for solving higher-order fractional Sturm-Liouville eigenvalue problems. J. of Computational Physics 272 (2014), 550–558.

    MathSciNet  MATH  Google Scholar 

  22. B.I. Henry, S.L. Wearne, Fractional reaction-diffusion. Physica A: Statistical Mechanics and its Applications 276, No 3 (2000), 448–455.

    MathSciNet  Google Scholar 

  23. H. Jafari, H. Tajadodi, D. Baleanu, A modified variational iteration method for solving fractional Riccati differential equation by Adomian polynomials. Fractional Calculus and Applied Analysis 416, No 1 (2013), 109–122; DOI: 10.2478/s13540-013-0008-9; http://www.degruyter.com/view/j/fca.2013.16.issue-1/issue-files/fca.2013.16.issue-1.xml.

    MathSciNet  MATH  Google Scholar 

  24. F. Jarad, T. Abdeljawad, D. Baleanu, Stability of q-fractional non- autonomous systems. Nonlinear Analysis: Real World Applications 14, No 1 (2013), 780–784.

    MathSciNet  MATH  Google Scholar 

  25. H. Khalil, R. Khan, M. Smadi, A. Freihat, A generalized algorithm based on Legendre polynomials for numerical solutions of coupled system of fractional order differential equations. J. of Fractional Calculus and Applications 6, No 2 (2015), 123–143.

    MathSciNet  MATH  Google Scholar 

  26. M. Klimek, T. Odzijewicz, A.B. Malinowska, Variational methods for the fractional Sturm-Liouville problem. J. of Mathematical Analysis and Applications 416, No 1 (2014), 402–426.

    MathSciNet  MATH  Google Scholar 

  27. F. Liu, M.M. Meerschaert, R.J. McGough, P. Zhuang, Q. Liu, Numerical methods for solving the multi-term time-fractional wave- diffusion equation. Fract. Calc. Appl. Anal. 416, No 1 (2013), 9–25; DOI: 10.2478/s13540-013-0002-2; http://www.degruyter.com/view/j/fca.2013.16.issue-1/issue-files/fca.2013.16.issue-1.xml.

    MathSciNet  MATH  Google Scholar 

  28. F. Liu, P. Zhuang, V. Anh, I. Turner, A fractional-order implicit difference approximation for the space-time fractional diffusion equation. ANZIAM Journal 47 (2006), 48–68.

    MathSciNet  Google Scholar 

  29. G.G. Lorentz, Bernstein Polynomials. American Mathematical Society, Providence, Rhode Island (2012).

    MATH  Google Scholar 

  30. C. Lubich, Discretized fractional calculus. SIAM J. of Mathematical Analysis 17, No 3 (1986), 704–719.

    MathSciNet  MATH  Google Scholar 

  31. Y. Luchko, Some uniqueness and existence results for the initial- boundary-value problems for the generalized time-fractional diffusion equation. Computers and Mathematics with Applications 59, No 5 (2010), 1766–1772.

    MathSciNet  MATH  Google Scholar 

  32. F. Mainardi, The fundamental solutions for the fractional diffusion- wave equation. Applied Mathematics Letters 9, No 6 (1996), 23–28.

    MathSciNet  MATH  Google Scholar 

  33. S. Momani, K. Al-Khaled, Numerical solutions for systems of fractional differential equations by the decomposition method. Applied Mathematics and Computation 162, No 3 (2005), 1351–1365.

    MathSciNet  MATH  Google Scholar 

  34. S. Momani, A.A. Rqayiq, D. Baleanu, A nonstandard finite difference scheme for two-sided space-fractional partial differential equations. International J. of Bifurcation and Chaos 22, No 04 (2012), 1250079.

    Google Scholar 

  35. Z. Obaidat, S. Momani, A generalized differential transform method for linear partial differential equations of fractional order. Applied Mathematics Letters 21, No 2 (2008), 194–199.

    MathSciNet  MATH  Google Scholar 

  36. I. Podlubny, Fractional Differential Equations. Academic Press, New York (1999).

    MATH  Google Scholar 

  37. D. Rostamy, K. Karimi, Bernstein polynomials for solving fractional heat-and wave-like equations. Fract. Calc. Appl. Anal. 415, No 4 (2012), 556–571; DOI: 10.2478/s13540-012-0039-7; http://www.degruyter.com/view/j/fca.2012.15.issue-4/issue-files/fca.2012.15.issue-4.xml.

    MathSciNet  MATH  Google Scholar 

  38. M. Syam, M. Al-Refai, Positive solutions and monotone iterative sequences for a class of higher order boundary value problems of fractional order. J. of Fract. Calc. and Applications 4, No 1 (2013), 147–159.

    MATH  Google Scholar 

  39. M. ur Rehman, R.A. Khan, A numerical method for solving boundary value problems for fractional differential equations. Applied Mathematical Modelling 36, No 3 (2012), 894–907.

    MathSciNet  MATH  Google Scholar 

  40. M. ur Rehman, R.A. Khan, The Legendre wavelet method for solving fractional differential equations. Commun. in Nonlinear Sci. and Numer. Simulation 16, No 11 (2011), 4163–4173.

    MathSciNet  MATH  Google Scholar 

  41. J. Wang, Y. Zhou, W. Wei, Fractional Schrödinger equations with potential and optimal controls. Nonlinear Analysis: Real World Applications 13, No 6 (2012), 2755–2766.

    MathSciNet  MATH  Google Scholar 

  42. X. Zhang, B. Tang, Y. He, Homotopy analysis method for higher-order fractional integro-differential equations. Computers and Mathematics with Applications 62, No 8 (2011), 3194–3203.

    MathSciNet  MATH  Google Scholar 

  43. M. Zayernouri, G.E. Karniadakis, Exponentially accurate spectral and spectral element methods for fractional ODEs, J. of Computational Physics 257 (2014), 460–480.

    MathSciNet  MATH  Google Scholar 

  44. M. Zayernouri, G.E. Karniadakis, Fractional spectral collocation method. SIAM J. on Scientific Computing 36, No 1 (2014), A40-A62.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qasem M. Al-Mdallal.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Al-Mdallal, Q.M., Hajji, M.A. A Convergent Algorithm for Solving Higher-Order Nonlinear Fractional Boundary Value Problems. FCAA 18, 1423–1440 (2015). https://doi.org/10.1515/fca-2015-0082

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1515/fca-2015-0082

Keywords

Navigation