Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter July 8, 2015

Independence of -adic representations of geometric Galois groups

  • Gebhard Böckle EMAIL logo , Wojciech Gajda and Sebastian Petersen

Abstract

Let k be an algebraically closed field of arbitrary characteristic, let K/k be a finitely generated field extension and let X be a separated scheme of finite type over K. For each prime , the absolute Galois group of K acts on the -adic étale cohomology modules of X. We prove that this family of representations varying over is almost independent in the sense of Serre, i.e., that the fixed fields inside an algebraic closure of K of the kernels of the representations for all become linearly disjoint over a finite extension of K. In doing this, we also prove a number of interesting facts on the images and on the ramification of this family of representations.

Award Identifier / Grant number: FG 1920

Award Identifier / Grant number: SPP 1489

Funding statement: Gebhard Böckle is supported by the DFG in the FG 1920 and by the DFG/FNR within the SPP 1489. Wojciech Gajda was supported by the Alexander von Humboldt Foundation and by the National Centre of Sciences of Poland under research grant UMO-2012/07/B/ST1/03541.

Acknowledgements

Gebhard Böckle thanks the Fields Institute for a research stay in the spring of 2012 during which part of this work was written. He also thanks Adam Mickiewicz University in Poznań for making possible a joint visit of the three authors in the fall of 2012. Wojciech Gajda thanks the Interdisciplinary Center for Scientific Computing (IWR) at Heidelberg University for hospitality during research visits in January 2012 and in January 2014. Sebastian Petersen thanks the Mathematics Department at Adam Mickiewicz University for hospitality and support during several research visits. We thank F. Orgogozo and L. Illusie for interesting correspondence concerning this project. In addition, the authors thank the anonymous referee for a thorough review of the paper and many helpful comments and suggestions, and in particular for pointing us to [Modular functions of one variable. II (Antwerp 1972), Lecture Notes in Math. 349, Springer, Berlin (1973), 501–597, Théorème 9.8] that replaced earlier arguments involving the global Langlands correspondence proven by L. Lafforgue.

References

[1] E. Artin, The orders of the classical simple groups, Comm. Pure and Applied Math. 1 (1955), 455–472. 10.1002/cpa.3160080403Search in Google Scholar

[2] M. Artin, A. Grothendieck and J.-L. Verdier, Séminaire de géométrie algébrique du Bois-Marie 1963–1964. Théorie des topos et cohomologie étale des schémas (SGA 4), Lecture Notes in Math. 269, 270, 305, Springer, Berlin, 1972–1973. Search in Google Scholar

[3] P. Berthelot, Altérations de variétés algébriques, Séminaire Bourbaki 1995/96. Exposés 805–819, Astérisque 241, Société Mathématique de France, Paris (1997), Exp. No. 815, 273–311. Search in Google Scholar

[4] N. Bourbaki, Éléments de mathématique. Groupes et algèbres de Lie. Chapitres 2 et 3, Springer, Berlin 1972. Search in Google Scholar

[5] A. Cadoret and A. Tamagawa, On subgroups of GLr(𝔽) and representations of étale fundamental groups, preprint (2013), http://www.math.polytechnique.fr/perso/cadoret.anna/Travaux.html. Search in Google Scholar

[6] J. A. de Jong, Smoothness, semi-stability and alterations, Publ. Math. Inst. Hautes Études Sci. 1 (1996), 51–93. 10.1007/BF02698644Search in Google Scholar

[7] P. Deligne, Les constantes des équations fonctionnelles des fonctions L, Modular functions of one variable. II (Antwerp 1972), Lecture Notes in Math. 349, Springer, Berlin (1973), 501–597. 10.1007/978-3-540-37855-6_7Search in Google Scholar

[8] P. Deligne, La conjecture de Weil I, Publ. Math. Inst. Hautes Études Sci. 43 (1974), 273–307. 10.1007/BF02684373Search in Google Scholar

[9] P. Deligne, Théorie de Hodge III, Publ. Math. Inst. Hautes Études Sci. 44 (1975), 5–77. 10.1007/BF02685881Search in Google Scholar

[10] M. Demazure and A. Grothendieck, Schémas en groupes. II: Groupes de type multiplicatif, et structure des schémas en groupes généraux. Exposés VIII à XVIII. Séminaire de Géométrie Algébrique du Bois Marie 1962/64 (SGA 3), Lecture Notes in Math. 152, Springer, Berlin, 1970. 10.1007/BFb0059027Search in Google Scholar

[11] A. Devic and R. Pink, Adelic openness for Drinfeld modules in special characteristic, J. Number Theory 132 (2012), 1583–1625. 10.1016/j.jnt.2012.01.015Search in Google Scholar

[12] M. Dickinson, On the modularity of certain 2-adic Galois representations, Duke Math. J. 1 (2001), 319–383. 10.1215/S0012-7094-01-10923-XSearch in Google Scholar

[13] W. Gajda and S. Petersen, Independence of -adic Galois representations over function fields, Compos. Math. 149 (2013), no. 7, 1091–1107. 10.1112/S0010437X12000711Search in Google Scholar

[14] A. Grothendieck, Éléments de géométrie algébrique. I: Le langage des schémas, Publ. Math. Inst. Hautes Études Sci. 4 (1960), 1–228. 10.1007/BF02684778Search in Google Scholar

[15] A. Grothendieck, Éléments de géométrie algébrique. IV: Étude locale des schémas et des morphismes de schémas (Troisième partie), Publ. Math. Inst. Hautes Études Sci. 28 (1966), 1–255. 10.1007/BF02684343Search in Google Scholar

[16] A. Grothendieck, Séminaire de géométrie algébrique du Bois Marie 1960/61. Revêtements étales et groupe fondamental (SGA 1), Lecture Notes in Math. 224, Springer, Berlin 1971. 10.1007/BFb0058656Search in Google Scholar

[17] A. Grothendieck, Seminaire de géométrie algébrique Du Bois-Marie 1967–1969. Groupes de monodromie en géométrie algébrique (SGA 7 I), Lecture Notes in Math. 288, Springer, Berlin 1972. Search in Google Scholar

[18] C. Y. Hui and M. Larsen, Adelic openness without Mumford–Tate conjecture, preprint (2014), http://arxiv.org/abs/1312.3812. Search in Google Scholar

[19] J.-I. Igusa, Fibre systems of Jacobian varieties. III: Fibre systems of elliptic curves, Amer. J. Math. , .. 10.2307/2372751Search in Google Scholar

[20] L. Illusie, Constructibilité générique et uniformité en , preprint (2010), www.math.u-psud.fr/~illusie. Search in Google Scholar

[21] N. M. Katz and S. Lang, Finiteness theorems in geometric classfield theory, Enseign. Math. (2) 27 (1981), no. 3–4, 285–319. 10.1007/978-1-4612-2116-6_9Search in Google Scholar

[22] N. M. Katz and G. Laumon, Transformation de Fourier et majoration de sommes exponentielles, Publ. Math. Inst. Hautes Études Sci. 62 (1986), 361–418; erratum, Publ. Math. Inst. Hautes Études Sci. 69 (1989), 244. Search in Google Scholar

[23] M. Kerz and A. Schmidt, On different notions of tameness in arithmetic geometry, Math. Ann. 346 (2010), no. 3, 641–668. 10.1007/s00208-009-0409-6Search in Google Scholar

[24] W. Kimmerle, R. Lyons, E. Sandling and D. Teague, Composition factors from the group ring and Artin’s theorem on orders of simple groups, Proc. Lond. Math. Soc. (3) 60 (1990), no. 1, 89–122. 10.1112/plms/s3-60.1.89Search in Google Scholar

[25] M. Larsen and R. Pink, Finite subgroups of algebraic groups, J. Amer. Math. Soc. 24 (2011), no. 4, 1105–1158. 10.1090/S0894-0347-2011-00695-4Search in Google Scholar

[26] W. Lütkebohmert, On compactification of schemes, Manuscripta Math. 80 (1993), 95–111. 10.1007/BF03026540Search in Google Scholar

[27] G. Malle and D. Testerman, Linear algebraic groups and finite groups of Lie type, Cambridge Stud. Adv. Math. 133, Cambridge Mathematical Society, Cambridge 2011. 10.1017/CBO9780511994777Search in Google Scholar

[28] J. Milne, Étale cohomology, Princeton University Press, Princeton 1980. Search in Google Scholar

[29] M. Nori, On subgroups of GLn(𝔽p), Invent. Math. 88 (1987), 257–275. 10.1007/BF01388909Search in Google Scholar

[30] F. Orgogozo, Sur les propriétiés d’uniformité des images directes en cohomologie étale, preprint (2012), http://fabrice.orgogozo.perso.math.cnrs.fr/articles/uniformite.pdf. Search in Google Scholar

[31] R. Ramakrishna, Infinitely ramified representations, Ann. of Math. (2) 151 (2000), 793–815. 10.2307/121048Search in Google Scholar

[32] J.-P. Serre, Represéntations -adiques, Œuvres. Collected papers. Vol. III: 1972–1984, Springer, Berlin (1986), 384–400. 10.1007/978-3-642-39816-2_112Search in Google Scholar

[33] J.-P. Serre, Propriétés conjecturales des groupes de Galois motiviques et des représentations -adiques, Motives. Proceedings of the summer research conference on motives (Seattle 1991), Proc. Sympos. Pure Math. 55, American Mathematical Society, Providence (1994), 377–400. 10.1090/pspum/055.1/1265537Search in Google Scholar

[34] J.-P. Serre, Abelian l-adic representations and elliptic curves, Res. Notes Math. 7, A K Peters, Wellesley 1998. 10.1201/9781439863862Search in Google Scholar

[35] J.-P. Serre, Une critère d’indépendance pour une famille de représentations -adiques, Comment. Math. Helv. 88 (2013), 543–576. 10.4171/CMH/295Search in Google Scholar

[36] J. Tate, Number theoretic background, Automorphic forms, representations and L-functions (Corvallis 1977), Proc. Sympos. Pure Math. 33, American Mathematical Society, Providence (1979), 3–26. 10.1090/pspum/033.2/546607Search in Google Scholar

[37] M. Vaquié, Valuations, Resolution of singularities (Obergurgl 1997), Progr. Math. 181, Birkhäuser, Basel (2000), 539–590. 10.1007/978-3-0348-8399-3_21Search in Google Scholar

Received: 2013-10-15
Revised: 2015-2-16
Published Online: 2015-7-8
Published in Print: 2018-3-1

© 2018 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 25.4.2024 from https://www.degruyter.com/document/doi/10.1515/crelle-2015-0024/html
Scroll to top button