Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter July 24, 2015

Kinetic properties of aryldialkylphosphatase immobilised on chitosan myristic acid nanogel

  • Seyede Maryam Mesbah Namini , Afshin Mohsenifar EMAIL logo , Rezvan Karami , Tavoos Rahmani-Cherati , Taha Roodbar Shojaei and Meisam Tabatabaei
From the journal Chemical Papers

Abstract

Organophosphorus (OP) compounds are extensively used in agricultural practice for pest management. However, their residues have a long half-life in the ecosystem as well as in the agro-products, posing a serious threat to human and animal health. Aryldialkylphosphatase (EC 3.1.8.1) is widely used in detoxification procedures. In the present study, aryldialkylphosphatase was immobilised on synthesised cross-linked nano-sized gel particles, also known as nanogels, in order to enhance the enzyme’s physicochemical properties. Accordingly, a new nanogel consisting of chitosan and myristic acid (CMA nanogel) was synthesised and characterised by way of Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The aryldialkylphosphatase-CMA nanogel conjugate was then assayed by FTIR, and its physicochemical characteristics were also investigated. The data obtained from SEM and TEM showed the nanogels to be homogenous spherical particles less than 50 nm in diameter. The proper formation of the nanogel and nanobioconjugate was also confirmed by FTIR spectra. In comparison with the free enzyme, the pH and thermal stability of the aryldialkylphosphatase were enhanced by the covalent immobilisation. Moreover, the immobilised enzyme could maintain approximately half of its activity over more than one month. The kinetic parameters of the aryldialkylphosphatase- CMA nanogel conjugate were also shown to undergo remarkable improvements, hence the synthesised CMA-nanogel could act as a promising support for aryldialkylphosphatase immobilisation. It is suggested that the aryldialkylphosphatase-CMA nanogel could be used for detoxifying paraoxon; a nerve agent. Further clinical experiments are underway.

References

Azodi, M., Falamaki, C., & Mohsenifar, A. (2011). Sucrose hydrolysis by invertase immobilized on functionalized porous silicon. Journal of Mollecular Catalysis B, 69, 154-160. DOI: 10.1016/j.molcatb.2011.01.011.10.1016/j.molcatb.2011.01.011Search in Google Scholar

Bekale, L., Agudelo, D., & Tajmir-Riahi, H. A. (2015). Effect of polymer molecular weight on chitosan-protein interaction. Colloids and Surfaces B, 125, 309-317. DOI: 10.1016/j.colsurfb.2014.11.037.10.1016/j.colsurfb.2014.11.037Search in Google Scholar

Beyki, M., Zhaveh, S., Khalili, S. T., Rahmani-Cherati, T., Abollahi, A., Bayat, M., Tabatabaei, M., & Mohsenifar, A. (2014). Encapsulation of Mentha piperita essential oils in chitosan-cinnamic acid nanogel with enhanced antimicrobial activity against Aspergillus flavus. Industrial Crops and Products, 54, 310-319. DOI: 10.1016/j.indcrop.2014.01.033.10.1016/j.indcrop.2014.01.033Search in Google Scholar

Cao, X. D., Chen, C., Yu, H. J., & Wang, P. (2015). Horseradish peroxidase-encapsulated chitosan nanoparticles for enzymeprodrug cancer therapy. Biotechnology Letters, 37, 81-88. DOI: 10.1007/s10529-014-1664-5.10.1007/s10529-014-1664-5Search in Google Scholar

Çetinus, S¸. A., & ¨Oztop, H. N. (2003). Immobilization of catalase into chemically crosslinked chitosan beads. Enzyme and Microbial Technology, 32, 889-894. DOI: 10.1016/s0141-0229(03)00065-6.10.1016/S0141-0229(03)00065-6Search in Google Scholar

Chang, M. Y., & Juang, R. S. (2005). Activities, stabilities and reaction kinetics of three free and chitosan-clay composite immobilized enzymes. Enzyme and Microbial Technology, 36, 75-82. DOI: 10.1016/j.enzmictec.2004.06.013.10.1016/j.enzmictec.2004.06.013Search in Google Scholar

Chapalamadugu, S., & Chaudhry, G. S. (1992). Microbiological and biotechnological aspects of metabolism of carbamates and organophosphates. Critical Reviews in Biotechnology, 12, 357-589. DOI: 10.3109/07388559209114232.10.3109/07388559209114232Search in Google Scholar

Clark, D. S. (1994). Can immobilization be exploited to modify enzyme activity? Trends in Biotechnology, 12, 439-443. DOI: 10.1016/0167-7799(94)90018-3.10.1016/0167-7799(94)90018-3Search in Google Scholar

Colak, U., & Gen¸cer, N. (2012). Immobilization of paraoxonase onto chitosan and its characterization. Artificial Cells, Blood Substitutes and Biotechnology, 40, 290-295. DOI: 10.3109/10731199.2011.652258.10.3109/10731199.2011.652258Search in Google Scholar PubMed

Dalvadi, H., & Patel, J. K. (2010). Chronpharmaceutics, pulsatile drug delivery system as current trend. Chronpharmaceutics/ Asian Journal of Pharmaceutical Sciences, 5, 204-230.Search in Google Scholar

Donarski, W. J., Dumas, D. P., Heitmeyer, D. P., Lewis, V. E., & Raushel, F. M. (1989). Structure-activity relationships in the hydrolysis of substrates by the phosphotriesterase from Pseudomonas diminuta. Biochemistry, 28, 4650-4655. DOI: 10.1021/bi00437a021.10.1021/bi00437a021Search in Google Scholar PubMed

Edama, N. A., Sulaiman, A., & Rahim, S. N. A. (2014). Enzymatic saccharification of tapioca processing wastes into biosugars through immobilization technology (Mini Review). Biofuel Research Journal, 1, 2-6.10.18331/BRJ2015.1.1.3Search in Google Scholar

Förster, S., & Plantenberg, T. (2002). From self-organizing polymers to nanohybrid and biomaterials. Angewandte Chemie International Edition, 41, 689-714. DOI: 10.1002/1521-3773(20020301)41:5<688::aid-anie688>3.0.co;2-3.10.1002/1521-3773(20020301)41:5<688::AID-ANIE688>3.0.CO;2-3Search in Google Scholar

Hashemifard, N., Mohsenifar, A., Ranjbar, B., Allameh, A., Lotfi, A. S., & Etemadikia, B. (2010). Fabrication and kinetic studies of a novel silver nanoparticles-glucose oxidase bioconjugate. Analytica Chimica Acta, 675, 181-184. DOI: 10.1016/j.aca.2010.07.004.10.1016/j.aca.2010.07.004Search in Google Scholar

Khalili, S. T., Mohsenifar, A., Beyki, M., Zhaveh, S., Rahmani- Cherati, T., Abdollahi, A., Bayat, M., & Tabatabaei, M. (2015). Encapsulation of Thyme essential oils in chitosan- benzoic acid nanogel with enhanced antimicrobial activity against Aspergillus flavus. LWT - Food Science and Technology, 60, 502-508. DOI: 10.1016/j.lwt.2014.07.054.10.1016/j.lwt.2014.07.054Search in Google Scholar

Kouassi, G. K., Irudayaraj, J., & McCarty, G. (2005). Examination of cholesterol oxidase immobilization to magnetic nanoparticles. Journal of Nanobiotechnology, 3, 1-10. DOI: 10.1186/1477-3155-3-1.10.1186/1477-3155-3-1Search in Google Scholar

Krajewska, B. (2004). Application of chitin- and chitosan-based materials for enzyme immobilizations: A review. Enzyme and Microbial Technology, 35, 126-139. DOI: 10.1016/j.enzmictec. 2003.12.013.Search in Google Scholar

Laider, K. J., & Bunting, P. S. (1980). The kinetics of immobilized enzyme systems. In D. L. Purich (Ed.), Methods in Enzymology (Vol. 64, pp. 227-248). New York, NY, USA: Academic Press.Search in Google Scholar

Martin, M. T., Plou, F. J., Alcalde, M., & Ballesteros, A. (2003). Immobilization on Eupergit C of cyclodextrin glucosyltransferase (CGTase) and properties of the immobilized biocatalyst. Journal of Molecular Catalysis B, 21, 299-308. DOI: 10.1016/S1381-1177(02)00264-3.10.1016/S1381-1177(02)00264-3Search in Google Scholar

Mulbry, W. W., & Karns, J. S. (1989). Parathion hydrolase specified by the Flavobacterium opd gene: Relationship between the gene and protein. Journal of Bacteriology, 171, 6740-6746.10.1128/jb.171.12.6740-6746.1989Search in Google Scholar

Munnecke, D. M. (1979). Hydrolysis of organophosphate insecticides by an immobilized-enzyme system. Biotechnology and Bioengineering, 21, 2247-2261. DOI: 10.1002/bit.260211207.10.1002/bit.260211207Search in Google Scholar

Oh, J. K., Drumright, R., Siegwart, D. J., & Matyjaszewski, K. (2008). The development of microgels/nanogels for drug delivery applications. Progress in Polymer Science, 33, 448-477. DOI: 10.1016/j.progpolymsci.2008.01.002.10.1016/j.progpolymsci.2008.01.002Search in Google Scholar

Oh, J. K., Lee, D. I., & Park, J. M. (2009). Biopolymerbased microgels/nanogels for drug delivery applications. Progress in Polymer Science, 34, 1261-1282. DOI: 10.1016/j. progpolymsci.2009.08.001.Search in Google Scholar

Palmieri, G., Giardina, P., Desiderio, B., Marzullo, L., Giamberini, M., & Sannia, G. (1994). A new enzyme immobilization procedure using copper alginate gel: Application to a fungal phenol oxidase. Enzyme and Microbial Technology, 16, 151-158. DOI: 10.1016/0141-0229(94)90078-7.10.1016/0141-0229(94)90078-7Search in Google Scholar

Russell, R. J., Pishko, M. V., Simonian, A. L., & Wild, J. R. (1999). Poly(ethylene glycol) hydrogel-encapsulated fluorophore-enzyme conjugates for direct detection of organophosphorus neurotoxins. Analytical Chemistry, 71, 4909-4912. DOI: 10.1021/ac990901u.10.1021/ac990901uSearch in Google Scholar PubMed

Şahin, F., Demirel, G., & Tümtürk, H. (2005). A novel matrix for the immobilization of acetylcholinesterase. International Journal of Biological Macromolecules, 37, 148-153. DOI: 10.1016/j.ijbiomac.2005.10.003.10.1016/j.ijbiomac.2005.10.003Search in Google Scholar PubMed

Tuovinen, K., Kaliste-Korhonen, E., Raushel, F. M., & Hänninen, O. (1994). Phosphotriesterase - a promising candidate for use in detoxification of organophosphates. Fundamental and Applied Toxicology, 23, 578-584. DOI: 10.1006/faat.1994. 1143.Search in Google Scholar

Willner, I., Baron, R., & Willner, B. (2007). Integrated nanoparticle-biomolecule systems for biosensing and bioelectronics. Biosensors and Bioelectronics, 22, 1841-1852. DOI: 10.1016/j.bios.2006.09.018.10.1016/j.bios.2006.09.018Search in Google Scholar PubMed

Yang, Y. H., Yang, H. F., Yang, M. H., Liu, Y. L., Shen, G. L., & Yu, R. Q. (2004). Amperometric glucose biosensor based on a surface treated nanoporous ZrO2/chitosan composite film as immobilization matrix. Analytica Chimica Acta, 525, 213-220. DOI: 10.1016/j.aca.2004.07.071.10.1016/j.aca.2004.07.071Search in Google Scholar

Yang, G., Wu, J. P., Xu, G., & Yang, L. R. (2010). Comparative study of properties of immobilized lipase onto glutaraldehyde-activated amino-silica gel via different methods. Colloids and Surfaces B, 78, 351-536. DOI: 10.1016/j. colsurfb.2010.03.022.Search in Google Scholar

Zhaveh, S., Mohsenifar, A., Beiki, M., Khalili, S. T., Abdollahi, A., Rahmani-Cherati, T., & Tabatabaei, M. (2015). Encapsulation of Cuminum cyminum essential oils in chitosan-caffeic acid nanogel with enhanced antimicrobial activity against Aspergillus flavus. Industrial Crops and Products, 69, 251-256. DOI: 10.1016/j.indcrop.2015.02.028.10.1016/j.indcrop.2015.02.028Search in Google Scholar

Ziaee, M., Moharramipour, S., & Mohsenifar, A. (2014a). MA-chitosan nanogel loaded with Cuminum cyminum essential oil for efficient management of two stored product beetle pests. Journal of Pest Science, 87, 691-699. DOI: 10.1007/s10340-014-0590-6.10.1007/s10340-014-0590-6Search in Google Scholar

Ziaee, M., Moharramipour, S., & Mohsenifar, A. (2014b). Toxicity of Carum copticum essential oil-loaded nanogel against Sitophilus granarius and Tribolium confusum. Journal of Applied Entomology, 138, 763-771. DOI: 10.1111/jen.12133.10.1111/jen.12133Search in Google Scholar

Received: 2015-1-25
Revised: 2015-4-18
Accepted: 2015-4-20
Published Online: 2015-7-24
Published in Print: 2015-10-1

© Institute of Chemistry, Slovak Academy of Sciences

Downloaded on 5.6.2024 from https://www.degruyter.com/document/doi/10.1515/chempap-2015-0143/html
Scroll to top button