Skip to main content

Advertisement

Log in

Antimicrobial and morphogenic effects of emodin produced by Aspergillus awamori WAIR120

  • Published:
Biologia Aims and scope Submit manuscript

Abstract

The antimicrobial activity of anthraquinone emodin isolated from Aspergillus awamori WAIR120 (LC032125) culture was investigated against some clinical, phytopathogenic and foodborne pathogenic microorganisms using an agar diffusion method. Among bacterial and fungal strains tested, the highest activity was obtained against Enterococcus faecalis AHR7 as well as Aspergillus niger OC20 with minimal inhibitory emodin concentration of 125 and 85 μg/mL, respectively. Emodin was found to induce morphogenic effects including swelling and elongation of bacterial cell and conidiation decrease, pigmentation loss, and cytoplasmic retraction of fungal cell, as was shown by light microscopy. Additionally, cellular effects were also resulted, in which emodin caused considerable changes in the nature of cell membrane and submicroscopic structure of bacterial and fungal cell, as was shown by transmission electron microscopy. Furthermore, there was an evidence of a disruption of lipid metabolism of fungal cell. These findings thus indicate the future possibility of exploiting emodin as an effective inhibitor of clinical, phytopathogenic and foodborne pathogenic microorganisms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

HPLC:

high performance liquid chromatography

MIC:

minimal inhibitory concentration

TEM:

transmission electron microscopy

TLC:

thin layer chromatography

References

  • Abd El-Aal M.A. 2012. Opportunistic fungi associated with ocular infections in Sharkia district. Master Thesis, Zagazig University, Zagazig, Egypt.

    Google Scholar 

  • Agosti G., Birkinshaw J.H. & Chaplen P. 1962. Studies in the biochemistry of micro-organisms. 112. Anthraquinone pigments of strains of Cladosporium fulvum Cooke. Biochem. J. 85: 528–530

    CAS  PubMed  PubMed Central  Google Scholar 

  • Al-Nuri M., Za’tar N.A., Abu-Eid M.A., Hannoun M.A., Al Jondi W.J., Hussein A.I. & Ali-Shtayeh M.S. 1996. Emodin, a naturally occuring anthraquinone: its isolation and spectrophotometric determination in Rumex cyprius Plant. Spectrosc. Lett. 29: 1539–1543

    Article  CAS  Google Scholar 

  • Altschul S.F., Madden T.L., Schäffer A.A., Zhang J., Zhang Z., Miller W. & Lipman D.J. 1997. Gapped BLAST and PSIBLAST: a new generation of protein database search programs. Nucleic Acids Res. 25: 3389–3402

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Anke H., Kolthoum I. & Laatsch H. 1980. Metabolic products of microorganisms. 192. The anthraquinones of the Aspergillus glaucus group. II. Biological activity. Arch. Microbiol. 126: 231–236

    Article  CAS  PubMed  Google Scholar 

  • Auffray Y., Boutibonnes P. & Lemarinier S. 1984. Filamentous forms of Bacillus thuringiensis (Berliner) formed in the presence of genotoxic mycotoxins. Microbiol. Aliments Nutr. 2: 59–67

    Google Scholar 

  • Barnard D.L., Huffman J.H., Morris J.L., Wood S.G., Hughes B.G. & Sidwell R.W. 1992. Evaluation of the antiviral activity of anthraquinones, anthrones and anthraquinone derivatives against human cytomegalovirus. Antiviral Res. 17: 63–77

    Article  CAS  PubMed  Google Scholar 

  • Basu S., Ghosh A. & Hazra B. 2005. Evaluation of the antibacterial activity of Ventilago madraspatana Gaertn., Rubia cordifolia Linn. and Lantana camara Linn.: isolation of emodin and physcion as active antibacterial agents. Phytother. Res. 19: 888–894

    Article  CAS  PubMed  Google Scholar 

  • Boik J.C. 1995. Cancer and Natural Medicine: A Textbook of Basic Science and Clinical Research. Oregon Medical Press, Princeton, MN, USA.

    Google Scholar 

  • Carmo E.S., de Oliveira Lima E., de Souza E.L. & de Sousa F.B. 2008. Effect of Cinnamomum zeylancium blume essential oil on the growth and morphogenesis of some potentially pathogenic Aspergillus species. Braz. J. Microbiol. 39: 91–97

    Article  PubMed  PubMed Central  Google Scholar 

  • Chang C.H., Lin C.C., Yang J.J., Namba T. & Hattori M. 1996. Antiinflammatory effects of emodin from Ventilago leiocarpa. Am. J. Chin. Med. 24: 139–142

    Article  CAS  PubMed  Google Scholar 

  • Chang M., Wang J., Tian F., Zhang Q. & Ye B. 2010. Antibacterial activity of secondary metabolites from Aspergillus awamori F12 isolated from rhizospheric soil of Rhizophora stylosa Griff. Acta Microbiol. Sin. 50: 1385–1391

    CAS  Google Scholar 

  • Cheng Y.W. & Kang J.J. 1998. Emodin-induced muscle contraction of mouse diaphragm and the involvement of Ca2+ influx and Ca2+ release from sarcoplasmic reticulum. Br. J. Pharmacol. 123: 815–820

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chukwujekwu J.C., Coombes P.H., Mulholland D.A. & van Staden J. 2006. Emodin, an antibacterial anthraquinone from the roots of Cassia occidentalis. S. Afr. J. Bot. 72: 295–297

    Article  CAS  Google Scholar 

  • de Barros I.B., de Souza-Daniel J.F., Pinto J.P., Rezendo M.I., Filho R.B. & Ferreira D.T. 2011. Phytochemical and antifungal activity of anthraquinones and root and leaf extracts of Coccoloba mollis on phytopathogens. Braz. Arch. Biol. Technol. 54: 535–541

    Article  CAS  Google Scholar 

  • Donnelly D.M.X. & Sheridan M.H. 1986. Anthraquinones from Trichoderma polysporum. Phytochem. 25: 2303–2304

    Article  CAS  Google Scholar 

  • Ezzat S.M., El-Sayed E.A., Abou El-Hawa M.I. & Ismaiel A.A. 2007. Morphological and ultrastructural studies for the biological action of penicillic acid on some bacterial species. Res. J. Microbiol. 2: 303–314

    Article  Google Scholar 

  • Ghosh A.C., Manmade A. & Demain A.L. 1977. Toxins from Penicillium islandicum Sopp, pp. 625–638. In: Rodricks J.V., Hesseltine C.W. & Mehlman M.A. (eds) Mycotoxins in Human and Animal Health. Pathotox, Chicago.

    Google Scholar 

  • Ismaiel A.A., Ali A.E.S. & Enan G. 2014. Incidence of Listeria in Egyptian meat and dairy samples. Food Sci. Biotechnol. 23: 179–185

    Article  Google Scholar 

  • Ismaiel A.A., Bassyouni R.H., Kamel Z. & Gabr S.M. 2016. Detoxification of patulin by kombucha tea culture. CyTA J. Food 14: 271–279

    Article  CAS  Google Scholar 

  • Ismaiel A.A. & Papenbrock J. 2014. The effects of patulin from Penicillium vulpinum on seedling growth, root tip ultrastructure and glutathione content of maize. Eur. J. Plant Pathol. 139: 497–509

    Article  CAS  Google Scholar 

  • Ismaiel A.A., Rabie G.H., Kenawey S.E.M. & Abd El-Aal M.A. 2012. Efficacy of aqueous garlic extract on growth, aflatoxin B1 production, and cyto-morphological aberrations of Aspergillus flavus, causing human ophthalmic infection: topical treatment of A. flavus keratitis. Braz. J. Microbiol. 43: 1355–1364

    Article  PubMed  PubMed Central  Google Scholar 

  • Izhaki I. 2002. Emodin — a secondary metabolite with multiple ecological functions in higher plants. New Phytol. 155: 205–217

    Article  CAS  Google Scholar 

  • Kögl F. & Postowsky J.J. 1925. Untersuchungen über Pilzfarb stoffe. II. Über die Farbstoffe des blutroten Hautkorpfes (Dermocybe sanquinea Wulf.). Justus Liebigs Ann. Chem. 444: 1–7

    Article  Google Scholar 

  • Le Van T. 1984. Emodin a fungal metabolite and the effects of emodin on the growth of some soil microorganisms. Acta Agr. Silv. Ser. Agraria 23: 235–242

    Google Scholar 

  • Lu C., Wang H., Lv W., Xu P., Zhu J., Xie J., Liu B. & Lou Z. 2011. Antibacterial properties of anthraquinones extracted from rhubarb against Aeromonas hydrophila. Fish Sci. 77: 375–384

    Article  CAS  Google Scholar 

  • Lu Y.Y., Zhang J.L. & Qian J.M. 2008. The effect of emodin on VEGF receptors in human colon cancer cells. Cancer Biother. Radiopharm. 23: 222–228

    Article  CAS  PubMed  Google Scholar 

  • Masuda T. & Ueno Y. 1984. Microsomal transformation of emodin into a direct mutagen. Mutat. Res. 125: 135–144

    Article  CAS  PubMed  Google Scholar 

  • Moubasher A.H. 1993. Soil Fungi in Qatar and Other Arab Countries. The Centre for Scientific and Applied Research, Doha, Qatar.

    Google Scholar 

  • Mueller S.O., Schmitt M., Dekant W., Stopper H., Schlatter J., Schreier P. & Lutz W.K. 1999. Occurrence of emodin, chrysophanol and physcion in vegetables, herbs and liquors. Genotoxicity and anti-genotoxicity of the anthraquinones and of the whole plants. Food Chem. Toxicol. 37: 481–491

    Article  CAS  PubMed  Google Scholar 

  • Natori S., Sato F. & Udagawa S. 1965. Anthraquinone metabolites of Talaromyces avellanens (Thom et Turreson), C.R. Benjamin and Preussia multispora (Saito et Minoura) Cain. Chem. Pharm. Bull. 13: 385–389

    Article  CAS  Google Scholar 

  • Panichayupakaranant P., Sakunpak A. & Sakunphueak A. 2009. Quantitative HPLC determination and extraction of anthraquinones in Senna alata leaves. J. Chromatogr. Sci. 47: 197–200

    Article  CAS  PubMed  Google Scholar 

  • Peng J., Song Z. & Ma C. 2008. Emodin studies on pharmacokinetics and distribution in rat liver after Polygonum cuspidatum Sieb. et Zucc. extract administration. World Sci. Technol. 10: 64–67

    Article  Google Scholar 

  • Shia C.S., Hou Y.C., Tsai S.Y., Huieh P.H., Leu Y.L. & Chao P.D. 2010. Differences in pharmacokinetics and ex vivo antioxidant activity following intravenous and oral administrations of emodin to rats. J. Pharm. Sci. 99: 2185–2195

    Article  CAS  PubMed  Google Scholar 

  • Shibata S., Shoji J., Ohta A. & Watanable M. 1957. Metabolic products of fungi. XI. Some observations on the occurrence of skyrin and rugulosin in mold metabolites with reference to structural relationships between penicilliopsin and skyrin. Chem. Pharm. Bull. 5: 380–383

    Article  CAS  Google Scholar 

  • Shibata S. & Udagawa S. 1963. Metabolic products of fungi. XIX. Isolation of rugulosin from Penicillium brunneum Udagawa. Chem. Pharm. Bull. 11: 402–403

    Article  CAS  Google Scholar 

  • Shieh D.E., Chen Y.Y., Yen M.H., Chiand L.C. & Lin C.C. 2004. Emodin-induced apoptosis through p53-dependent pathway in human hepatoma cells. Life Sci. 74: 2279–2290

    Article  CAS  PubMed  Google Scholar 

  • Singh U.P., Singh K.P., Singh S.P., Ram S.N. & Pandey V.B. 1992. Effect of emodin isolated from Rhamnus triquetra on spore germination of some fungi. Fitopatol. Bras. 17: 420–422

    CAS  Google Scholar 

  • Turner W.B. & Aldridge D.C. 1983. Fungal Metabolites II. London, Academic Press.

    Google Scholar 

  • Ubbink-Kok T., Anderson J.A. & Konings W.N. 1986. Inhibition of electron transfer and uncoupling effects by emodin and emodinanthrone in Escherichia coli. Antimicrob. Agents Chemother. 30: 147–151

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang C., Zhang D., Ma H. & Liu J. 2007. Neuroprotective effects of emodin-8-O-beta-D-glucoside in vivo and in vitro. Eur. J. Pharmacol. 577: 58–63

    Article  CAS  PubMed  Google Scholar 

  • Wang H.H. 1993. Antitrichomonal action of emodin in mice. J. Ethnopharmacol. 40: 111–116

    Article  CAS  PubMed  Google Scholar 

  • Wang H.H. & Chung J.G. 1997. Emodin-induced inhibition of growth and DNA damage in the Helicobacter pylori. Curr. Microbiol. 35: 262–266

    Article  CAS  PubMed  Google Scholar 

  • Wang W., Zhou Q., Liu L. & Zou K. 2012. Anti-allergic activity of emodin on IgE-mediated activation in RBL-2H3 cells. Pharmacol. Rep. 64: 1216–1222

    Article  CAS  PubMed  Google Scholar 

  • Wells J.M., Cole R.J. & Kirksey J.W. 1975. Emodin, a toxic metabolite of Aspergillus wentii isolated from weevil-damaged chestnuts. Appl. Microbiol. 30: 26–28

    CAS  PubMed  PubMed Central  Google Scholar 

  • Xue J., Ding W. & Liu Y. 2010. Anti-diabetic effects of emodin involved in the activation of PPARgamma on high-fat dietfed and low dose of streptozotocin-induced diabetic mice. Fitoterapia 81: 173–177

    Article  CAS  PubMed  Google Scholar 

  • Yamazaki M., Maebayashi Y. & Miyaki K. 1971. The isolation of secalonic acid A from Aspergillus ochraceus cultured on rice. Chem. Pharm. Bull. 19: 199–201

    Article  CAS  Google Scholar 

  • Zhang L., Lau Y.K., Xi L., Hong R.L., Kim D.S., Chen C.F., Hortobagyi G.N., Chang C. & Hung M.C. 1998. Tyrosine kinase inhibitors, emodin and its derivative repress HER-2/neu-induced cellular transformation and metastasis-associated properties. Oncogene 16: 2855–2863

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors thank Dr. Basma Hamdy Amin, TEM Unit, Regional Center for Mycology and Biotechnology, Al-Azhar University, Cairo, Egypt, for excellent technical assistance during the processing steps of TEM. The work employed herein was supported in part by the Department of Botany and Microbiology, Faculty of Science, Zagazig University, Egypt.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ahmed A. Ismaiel.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ismaiel, A.A., Rabie, G.H. & Abd El-Aal, M.A. Antimicrobial and morphogenic effects of emodin produced by Aspergillus awamori WAIR120. Biologia 71, 464–474 (2016). https://doi.org/10.1515/biolog-2016-0067

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1515/biolog-2016-0067

Key words

Navigation