Skip to main content
Log in

Expression of bacterial glutamine synthetase gene in Arabidopsis thaliana increases the plant biomass and level of nitrogen utilization

  • Published:
Biologia Aims and scope Submit manuscript

Abstract

Changes in expression of glutamine synthetase (GS) have effect on plant nitrogen metabolism. In order to improve nitrogen use efficiency, several attempts at over-expressing GS II genes in plants have been previously undertaken, however few GSI and III genes are found such application. In this study, two GS I genes were cloned from bacterial strains and were transformed into Arabidopsis thaliana. Expression of the genes was confirmed under both mRNA and protein levels. Phenotypic studies revealed that all transgenic Arabidopsis lines showed enhanced fresh weight (12%) and dry weight (13%) compared with the wild-type plants at two concentrations of nitrate supplies. Further biochemical characterization confirmed that the transgenic lines had higher total nitrogen content (increased by 5–8%), soluble protein concentration (increased by 7–11%), total amino acid content (increased by 4–8%), leaf GS activity (enhanced by 8-14%) and free NO3concentration (increased by 8–16%) compared to wild type Arabidopsis. This work firstly reported that over-expression of bacterial GS I genes in Arabidopsis resulted in improvement of growth phenotype and nitrogen use efficiency (NUE) of plant. The bacterial GS genes could be potentially useful in engineering transgenic plants of high NUE.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bent A. 2006. Arabidopsis thaliana floral dip transformation method. Methods Mol. Biol. 343: 87–104.

    CAS  PubMed  Google Scholar 

  • Brauer E.K., Rochon A., Bi Y.M., Bozzo G.G., Rothstein S.J. & Shelp B.J. 2011. Reappraisal of nitrogen use efficiency in rice overexpressing glutamine synthetase. Physiol. Plant. 141: 361–372.

    Article  CAS  Google Scholar 

  • Burris R.H. & Roberts G.P. 1993. Biological nitrogen fixation. Annu. Rev. Nutr. 13: 317–335.

    Article  CAS  Google Scholar 

  • Cai H., Zhou Y., Xiao J., Li X., Zhang Q. & Lian X. 2009. Overexpressed glutamine synthetase gene modifies nitrogen metabolism and abiotic stress responses in rice. Plant Cell Rep. 28: 527–537.

    Article  CAS  Google Scholar 

  • Cataldo D.A., Maroon M., Schrader L.E. & Youngs V.L. 1975. Rapid colorimetric determination of nitrate in plant tissue by nitration of salicylic acid. Commun. Soil Sci. Plant Anal. 6: 71–80.

    Article  CAS  Google Scholar 

  • Crespo J.L., Garcia-Dominguez M. & Florencio F.J. 1998. Nitrogen control of the glnN gene that codes for GS type III, the only glutamine synthetase in the cyanobacterium Pseudanabaena sp. PCC 6903. Mol. Microbiol. 30: 1101–1112.

    Article  CAS  Google Scholar 

  • Eckes P., Schmitt P., Daub W. & Wengenmayer F. 1989. Overproduction of alfalfa glutamine synthetase in transgenic tobacco plants. Mol. Gen. Genet. 217: 263–268.

    Article  CAS  Google Scholar 

  • Fei H., Chaillou S., Hirel B., Mahon J.D. & Vessey J.K. 2003. Overexpression of a soybean cytosolic glutamine synthetase gene linked to organ-specific promoters in pea plants grown in different concentrations of nitrate. Planta 216: 467–474.

    CAS  PubMed  Google Scholar 

  • Fu J., Sampalo R., Gallardo F., Canovas F.M. & Kirby E.G. 2003. Assembly of a cytosolic pine glutamine synthetase holoenzyme in leaves of transgenic poplar leads to enhanced vegetative growth in young plants. Plant Cell Environ. 26: 411–418.

    Article  CAS  Google Scholar 

  • Fuentes S.I., Allen D.J., Ortiz-Lopez A. & Herhandez G. 2001. Overexpression of cytosolic glutamine synthetase increases photosynthesis and growth at low nitrogen concentrations. J. Exp. Bot. 52: 1071–1081.

    Article  CAS  Google Scholar 

  • Gallardo F., Fu J., Canton F.R., Garcia-Gutierez A., Canovas F.M. & Kirby E.G. 1999. Expression of a conifer glutamine synthetase gene in transgenic poplar. Planta 210: 19–26.

    Article  CAS  Google Scholar 

  • Garcia-Dominguez M., Reyes J.C. & Florencio F.J. 1997. Purification and characterization of a new type of glutamine synthetase from cyanobacteria. Eur. J. Biochem. 244: 258–264.

    Article  CAS  Google Scholar 

  • Hao Q.N., Zhou X.A., Sha A.H., Wang C., Zhou R. & Chen S.L. 2011. Identification of genes associated with nitrogenuse efficiency by genome-wide transcriptional analysis of two soybean genotypes. BMC Genomics 12: 525.

    Article  CAS  Google Scholar 

  • Jing Z.P., Gallardo F., Pascual M.B., Sampalo R., Romero J., de Navarra A.T. & Canovas F.M. 2004. Improved growth in a field trial of transgenic hybrid poplar overexpressing glutamine synthetase. New Phytol. 164: 137–145.

    Article  CAS  Google Scholar 

  • Koncz C., Martini N., Mayerhofer R., Koncz-Kalman Z., Körber H., Redei G.P. & Schell J. 1989. High-frequency T-DNA-mediated gene tagging in plants. Proc. Natl. Acad. Sci. USA 86: 8467–8671.

    Article  CAS  Google Scholar 

  • Kozaki A. & Takeba G. 1996. Photorespiration protects C3 plants from photooxidation. Nature 384: 557–560.

    Article  CAS  Google Scholar 

  • Lincoln C., Britton J.H. & Estelle M. 1990. Growth and development of the axrl mutants of Arabidopsis. Plant Cell 2: 1071–1080.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lynch J.M. & Barbano D.M. 1999. Kjeldahl nitrogen analysis as a reference method for protein determination in dairy products. J. AOAC Int. 82: 1389–1398.

    CAS  PubMed  Google Scholar 

  • Man H.M., Boriel R., El-Khatib R. & Kirby E.G. 2005. Characterization of transgenic poplar with ectopic expression of pine cytosolic glutamine synthetase under conditions of varying nitrogen availability. New Phytol. 167: 31–39.

    Article  CAS  Google Scholar 

  • Martin A., Lee J., Kichey T., Gerentes D., Zivy M., Tatout C., Dubois F., Balliau T., Valot B., Davanture M., Tercé-Laforgue T., Quilleré I., Coque M., Gallais A., Gonzalez-Moro M.B., Bethencourt L., Habash D.Z., Lea P.J., Char-cosset A., Perez P., Murigneux A., Sakakibara H., Edwards K.J. & Hirel B. 2006. Two cytosolic glutamine synthetase iso-forms of maize are specifically involved in the control of grain production. Plant Cell 18: 3252–3274.

    Article  CAS  Google Scholar 

  • McAllister C.H., Beatty P.H. & Good A.G. 2012. Engineering nitrogen use efficient crop plants: the current status. Plant Biotechnol. J. 10: 1011–1025.

    Article  CAS  Google Scholar 

  • Melo P.M., Lima L.M., Santos I.M., Carvalho H.G. & Cullimore J.V. 2003. Expression of the plastid-located glutamine synthetase of Medicago truncatula: accumulation of the precursor in root nodules reveals an in vivo control at the level of protein import into plastids. Plant Physiol. 132: 390–399.

    Article  CAS  Google Scholar 

  • Mérida A., Flores E. & Florencio F.J. 1992. Regulation of Anabaena sp. strain PCC 7120 glutamine synthetase activity in a SynechocysfÀs sp. strain PCC 6803 derivative strain bearing the Anabaena glnA gene and a mutated host glnA gene. J. Bacteriol. 174: 650–654.

    Article  Google Scholar 

  • Miao G.H., Hirel B., Marsolier M.C., Ridge R.W. & Verma D.P. 1991. Ammonia-regulated expression of a soybean gene encoding cytosolic glutamine synthetase in transgenic Lotus corniculatus. Plant Cell 3: 11–22.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Miflin B.J. & Habash D.Z. 2002. The role of glutamine synthetase and glutamate dehydrogenase in nitrogen assimilation and possibilities for improvement in the nitrogen utilization of crops. J. Exp. Bot. 53: 979–987.

    Article  CAS  Google Scholar 

  • Migge A., Carrayol E., Hirel B. & Becker T.W. 2000. Leaf-specific overexpression of plastidic glutamine synthetase stimulates the growth of transgenic tobacco seedlings. Planta 210: 252–260.

    Article  CAS  Google Scholar 

  • Murashige T. & Skoog F. 1962. A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol. Plant. 15: 473–497.

    Article  CAS  Google Scholar 

  • O’Neal D. & Joy K.W. 1973. Glutamine synthetase of pea leaves: purification, stabilization and pH optima. Arch. Biochem. Biophys. 159: 113–122.

    Article  Google Scholar 

  • Oliveira I.C., Brears T., Knight T.J., Clark A. & Coruzzi G.M. 2002. Overexpression of cytosolic glutamine synthetase: relation to nitrogen, light and photorespiration. Plant Physiol. 129: 1170–1180.

    Article  CAS  Google Scholar 

  • Ortega J.L., Temple S.J., Bagga S., Ghoshroy S. & Sengupta-Gopalan C. 2004. Biochemical and molecular characterization of transgenic Lotus japonicus plants constitutively over-expressing a cytosolic glutamine synthetase gene. Planta 219: 807–818

    Article  CAS  Google Scholar 

  • Ortega J.L., Temple S.J. & Sengupta-Gopalan C. 2001. Constitutive overexpression of cytosolic glutamine synthetase (GS1) gene in transgenic alfalfa demonstrates that GS1 may be regulated at the level of RNA stability and protein turnover. Plant Physiol. 126: 109–121.

    Article  CAS  Google Scholar 

  • Rosen H. 1957. A modified ninhydrin colorimetric analysis for amino acids. Arch. Biochem. Biophys. 67: 10–15.

    Article  CAS  Google Scholar 

  • Sambrook J. & Russell D.W. 2001. Molecular Cloning: A Laboratory Manual, 3rd edn. Cold Spring Harbor Laboratory Press, New York, USA.

    Google Scholar 

  • Suárez R., Márquez J., Shishkova S. & Hernández G. 2003. Over-expression of alfalfa cytosolic glutamine synthetase in nodules and flowers of transgenic Lotus japonicus plants. Physiol. Plant. 117: 326–336.

    Article  Google Scholar 

  • Tamura K., Dudley J., Nei M. & Kumar S. 2007. MEGA4: Molecular evolutionary genetics analysis (MEGA) software version 4.0. Mol. Biol. Evol. 24: 1596–1599.

    Article  CAS  Google Scholar 

  • Valentine R.C., Shapiro B.M. & Stadtman E.R. 1968. Regulation of glutamine synthetase, XII. Electron microscopy of the enzyme from Escherichia coli. Biochemistry 7: 2143–2152.

    Article  CAS  Google Scholar 

  • Wen Z.T., Peng L. & Morrison M. 2003. The glutamine synthetase of Prevotella bryantii B14 is a family III enzyme (GlnN) and glutamine supports growth of mutants lacking glutamate dehydrogenase activity. FEMS Microbiol. Lett. 229: 15–21

    Article  CAS  Google Scholar 

  • Yamashita M.M., Almassy R.J., Janson C.A., Cascio D. & Eisenberg D. 1989. Refined atomic model of glutamine synthetase at 3.5 Å resolution. J. Biol. Chem. 264: 17681–17690.

    CAS  PubMed  Google Scholar 

  • Zhu C., Fan Q., Wang W., Shen C., Meng X., Tang Y., Mei B., Xu Z. & Song R. 2014. Characterization of a glutamine synthetase gene DvGS2 from Dunaliella viridis and biochemical identification of DvGS2-transgenic Arabidopsis thaliana. Gene 536: 407–415.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chenguang Zhu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhu, C., Zhang, G., Shen, C. et al. Expression of bacterial glutamine synthetase gene in Arabidopsis thaliana increases the plant biomass and level of nitrogen utilization. Biologia 70, 1586–1596 (2015). https://doi.org/10.1515/biolog-2015-0183

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1515/biolog-2015-0183

Key words

Navigation