Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter September 14, 2006

The aryl hydrocarbon receptor and light

  • Agneta Rannug and Ellen Fritsche
From the journal Biological Chemistry

Abstract

The aryl hydrocarbon receptor (AhR) is a ligand-activated transcription factor that has been intensively studied with respect to the toxicity of xenobiotics. However, its function in response to light has never been summarized. Here, we provide an overview of AhR activation by light with a focus on the role of tryptophan in light-induced AhR activation. We discuss the involvement of the AhR in different biological rhythms and speculate on the possible role of the AhR in UV-induced responses in skin. Furthermore, this review points out future research needs in this field.

:

Corresponding author

References

Abe, H., Honma, S., Namihira, M., Tanahashi, Y., Ikeda, M., and Honma, K. (1998). Circadian rhythm and light responsiveness of BMAL1 expression, a partner of mammalian clock gene Clock, in the suprachiasmatic nucleus of rats. Neurosci. Lett.258, 93–96.10.1016/S0304-3940(98)00877-5Search in Google Scholar

Aggarwal, B.B., Bhardwaj, A., Aggarwal, R.S., Seeram, N.P., Shishodia, S., and Takada, Y. (2004). Role of resveratrol in prevention and therapy of cancer: preclinical and clinical studies. Anticancer Res.24, 2783–2840.Search in Google Scholar

Albrecht, U., Sun, Z.S., Eichele, G., and Lee, C.C. (1997). A differential response of two putative mammalian circadian regulators, mper1 and mper2, to light. Cell91, 1055–1064.10.1016/S0092-8674(00)80495-XSearch in Google Scholar

Alexander, D.L., Zhang, L., Foroozesh, M., Alworth, W.L., and Jefcoate, C.R. (1999). Metabolism-based polycyclic aromatic acetylene inhibition of CYP1B1 in 10T1/2 cells potentiates aryl hydrocarbon receptor activity. Toxicol. Appl. Pharmacol.161, 123–139.10.1006/taap.1999.8794Search in Google Scholar

Alvarez, J.D. and Sehgal, A. (2002). Circadian rhythms: finer clock control. Nature419, 798–799.10.1038/419798aSearch in Google Scholar

Balsalobre, A., Damiola, F., and Schibler, U. (1998). A serum shock induces circadian gene expression in mammalian tissue culture cells. Cell93, 929–937.10.1016/S0092-8674(00)81199-XSearch in Google Scholar

Barnes, J.W., Tischkau, S.A., Barnes, J.A., Mitchell, J.W., Burgoon, P.W., Hickok, J.R., and Gillette, M.U. (2003). Requirement of mammalian Timeless for circadian rhythmicity. Science302, 439–442.10.1126/science.1086593Search in Google Scholar PubMed

Bendova, Z. and Sumova, A. (2006). Photoperiodic regulation of PER1 and PER2 protein expression in rat peripheral tissues. Physiol. Res., in press.10.33549/physiolres.930849Search in Google Scholar PubMed

Bergander, L., Wahlstrom, N., Alsberg, T., Bergman, J., Rannug, A., and Rannug, U. (2003). Characterization of in vitro metabolites of the aryl hydrocarbon receptor ligand 6-formylindolo[3,2-b]carbazole by liquid chromatography-mass spectrometry and NMR. Drug Metab. Dispos.31, 233–241.10.1124/dmd.31.2.233Search in Google Scholar PubMed

Bergander, L., Wincent, E., Rannug, A., Foroozesh, M., Alworth, W., and Rannug, U. (2004). Metabolic fate of the Ah receptor ligand 6-formylindolo[3,2-b]carbazole. Chem. Biol. Interact.149, 151–164.10.1016/j.cbi.2004.08.005Search in Google Scholar PubMed

Bernshausen, T., Jux, B., Esser, C., Abel, J., and Fritsche, E. (2006). Tissue distribution and function of the Aryl hydrocarbon receptor repressor (AhRR) in C57BL/6 and Aryl hydrocarbon receptor deficient mice. Arch. Toxicol.80, 206–211.10.1007/s00204-005-0025-5Search in Google Scholar PubMed

Bjarnason, G.A., Jordan, R.C., Wood, P.A., Li, Q., Lincoln, D.W., Sothern, R.B., Hrushesky, W.J., and Ben-David, Y. (2001). Circadian expression of clock genes in human oral mucosa and skin: association with specific cell-cycle phases. Am. J. Pathol.158, 1793–1801.10.1016/S0002-9440(10)64135-1Search in Google Scholar

Boivin, D.B., James, F.O., Wu, A., Cho-Park, P.F., Xiong, H., and Sun, Z.S. (2003). Circadian clock genes oscillate in human peripheral blood mononuclear cells. Blood102, 4143–4145.10.1182/blood-2003-03-0779Search in Google Scholar

Buckman, S.Y., Gresham, A., Hale, P., Hruza, G., Anast, J., Masferrer, J., and Pentland, A.P. (1998). COX-2 expression is induced by UVB exposure in human skin: implications for the development of skin cancer. Carcinogenesis19, 723–729.10.1093/carcin/19.5.723Search in Google Scholar

Bunger, M.K., Wilsbacher, L.D., Moran, S.M., Clendenin, C., Radcliffe, L.A., Hogenesch, J.B., Simon, M.C., Takahashi, J.S., and Bradfield, C.A. (2000). Mop3 is an essential component of the master circadian pacemaker in mammals. Cell103, 1009–1017.10.1016/S0092-8674(00)00205-1Search in Google Scholar

Chang, C.Y. and Puga, A. (1998). Constitutive activation of the aromatic hydrocarbon receptor. Mol. Cell. Biol.18, 525–535.10.1128/MCB.18.1.525Search in Google Scholar PubMed PubMed Central

Chapman, P.H., Kersey, P.J., Keys, B., Shuster, S., and Rawlins, M.D. (1980). Generalised tissue abnormality of aryl hydrocarbon hydroxylase in psoriasis. Br. Med. J.281, 1315–1316.10.1136/bmj.281.6251.1315Search in Google Scholar PubMed PubMed Central

Cheng, M.Y., Bullock, C.M., Li, C., Lee, A.G., Bermak, J.C., Belluzzi, J., Weaver, D.R., Leslie, F.M., and Zhou, Q.Y. (2002). Prokineticin 2 transmits the behavioural circadian rhythm of the suprachiasmatic nucleus. Nature417, 405–410.10.1038/417405aSearch in Google Scholar PubMed

Chua, M.S., Kashiyama, E., Bradshaw, T.D., Stinson, S.F., Brantley, E., Sausville, E.A., and Stevens, M.F. (2000). Role of Cyp1A1 in modulation of antitumor properties of the novel agent 2-(4-amino-3-methylphenyl)benzothiazole (DF 203, NSC 674495) in human breast cancer cells. Cancer Res.60, 5196–5203.Search in Google Scholar

Crawford, R.B., Holsapple, M.P., and Kaminski, N.E. (1997). Leukocyte activation induces aryl hydrocarbon receptor up-regulation, DNA binding, and increased Cyp1a1 expression in the absence of exogenous ligand. Mol. Pharmacol.52, 921–927.10.1124/mol.52.6.921Search in Google Scholar PubMed

Denison, M.S. and Nagy, S.R. (2003). Activation of the aryl hydrocarbon receptor by structurally diverse exogenous and endogenous chemicals. Annu. Rev. Pharmacol. Toxicol.43, 309–334.10.1146/annurev.pharmtox.43.100901.135828Search in Google Scholar PubMed

Devary, Y., Rosette, C., DiDonato, J.A., and Karin, M. (1993). NF-κB activation by ultraviolet light not dependent on a nuclear signal. Science261, 1442–1445.10.1126/science.8367725Search in Google Scholar PubMed

Diani-Moore, S., Labitzke, E., Brown, R., Garvin, A., Wong, L., and Rifkind, A.B. (2006). Sunlight generates multiple tryptophan photoproducts eliciting high efficacy CYP1A induction in chick hepatocytes and in vivo. Toxicol. Sci.90, 96–110.10.1093/toxsci/kfj065Search in Google Scholar

Dunlap, J.C. (1999). Molecular bases for circadian clocks. Cell96, 271–290.10.1016/S0092-8674(00)80566-8Search in Google Scholar

El-Abaseri, T.B., Fuhrman, J., Trempus, C., Shendrik, I., Tennant, R.W., and Hansen, L.A. (2005). Chemoprevention of UV light-induced skin tumorigenesis by inhibition of the epidermal growth factor receptor. Cancer Res.65, 3958–3965.10.1158/0008-5472.CAN-04-2204Search in Google Scholar PubMed

Elferink, C.J. (2003). Aryl hydrocarbon receptor-mediated cell cycle control. Prog. Cell Cycle Res.5, 261–267.Search in Google Scholar

Elizondo, G., Fernandez-Salguero, P., Sheikh, M.S., Kim, G.Y., Fornace, A.J., Lee, K.S., and Gonzalez, F.J. (2000). Altered cell cycle control at the G2/M phases in aryl hydrocarbon receptor-null embryo fibroblast. Mol. Pharmacol.57, 1056–1063.Search in Google Scholar

Fernandez-Salguero, P., Pineau, T., Hilbert, D.M., McPhail, T., Lee, S.S., Kimura, S., Nebert, D.W., Rudikoff, S., Ward, J.M., and Gonzalez, F.J. (1995). Immune system impairment and hepatic fibrosis in mice lacking the dioxin-binding Ah receptor. Science268, 722–726.10.1126/science.7732381Search in Google Scholar PubMed

Fernandez-Salguero, P.M., Hilbert, D.M., Rudikoff, S., Ward, J.M., and Gonzalez, F.J. (1996). Aryl-hydrocarbon receptor-deficient mice are resistant to 2,3,7,8-tetrachlorodibenzo-p-dioxin-induced toxicity. Toxicol. Appl. Pharmacol.140, 173–179.10.1006/taap.1996.0210Search in Google Scholar PubMed

Fernandez-Salguero, P.M., Ward, J.M., Sundberg, J.P., and Gonzalez, F.J. (1997). Lesions of aryl-hydrocarbon receptor-deficient mice. Vet. Pathol.34, 605–614.10.1177/030098589703400609Search in Google Scholar PubMed

Ge, N.L. and Elferink, C.J. (1998). A direct interaction between the aryl hydrocarbon receptor and retinoblastoma protein. Linking dioxin signaling to the cell cycle. J. Biol. Chem.273, 22708–22713.10.1074/jbc.273.35.22708Search in Google Scholar PubMed

Gekakis, N., Staknis, D., Nguyen, H.B., Davis, F.C., Wilsbacher, L.D., King, D.P., Takahashi, J.S., and Weitz, C.J. (1998). Role of the CLOCK protein in the mammalian circadian mechanism. Science280, 1564–1569.10.1126/science.280.5369.1564Search in Google Scholar PubMed

Goerz, G., Merk, H., Bolsen, K., Tsambaos, D., and Berger, H. (1983). Influence of chronic UV-light exposure on hepatic and cutaneous monooxygenases. Experientia39, 385–386.10.1007/BF01963137Search in Google Scholar PubMed

Goerz, G., Barnstorf, W., Winnekendonk, G., Bolsen, K., Fritsch, C., Kalka, K., and Tsambaos, D. (1996). Influence of UVA and UVB irradiation on hepatic and cutaneous P450 isoenzymes. Arch. Dermatol. Res.289, 46–51.10.1007/s004030050151Search in Google Scholar PubMed

Gonzalez, F.J., Fernandez-Salguero, P., Lee, S.S., Pineau, T., and Ward, J.M. (1995). Xenobiotic receptor knockout mice. Toxicol. Lett.82–83, 117–121.10.1016/0378-4274(95)03548-6Search in Google Scholar

Grady, D. and Ernster, V. (1992). Does cigarette smoking make you ugly and old? Am. J. Epidemiol.135, 839–842.Search in Google Scholar

Greene, J.F., Hays, S., and Paustenbach, D. (2003). Basis for a proposed reference dose (RfD) for dioxin of 1–10 pg/kg-day: a weight of evidence evaluation of the human and animal studies. J. Toxicol. Environ. Health B Crit. Rev.6, 115–159.10.1080/10937400306470Search in Google Scholar

Gu, Y.Z., Hogenesch, J.B., and Bradfield, C.A. (2000). The PAS superfamily: sensors of environmental and developmental signals. Annu. Rev. Pharmacol. Toxicol.40, 519–561.10.1146/annurev.pharmtox.40.1.519Search in Google Scholar

Guo, J.F., Brown, R., Rothwell, C.E., and Bernstein, I.A. (1990). Levels of cytochrome P-450-mediated aryl hydrocarbon hydroxylase (AHH) are higher in differentiated than in germinative cutaneous keratinocytes. J. Invest. Dermatol.94, 86–93.10.1111/1523-1747.ep12873939Search in Google Scholar

Gwang, J.H. (1996). Induction of rat hepatic cytochrome P4501A and P4502B by the methoxsalen. Cancer Lett.109, 115–120.10.1016/S0304-3835(97)82727-9Search in Google Scholar

Hankinson, O., Andersen, R.D., Birren, B.W., Sander, F., Negishi, M., and Nebert, D.W. (1985). Mutations affecting the regulation of transcription of the cytochrome P1-450 gene in the mouse Hepa-1 cell line. J. Biol. Chem.260, 1790–1795.10.1016/S0021-9258(18)89662-4Search in Google Scholar

Harvey, J.L., Paine, A.J., and Wright, M.C. (1998). Disruption of endogenous regulator homeostasis underlies the mechanism of rat CYP1A1 mRNA induction by metyrapone. Biochem. J.331, 273–281.10.1042/bj3310273Search in Google Scholar

Hastings, M. and Maywood, E.S. (2000). Circadian clocks in the mammalian brain. Bioessays22, 23–31.10.1002/(SICI)1521-1878(200001)22:1<23::AID-BIES6>3.0.CO;2-ZSearch in Google Scholar

Hastings, M.H., Reddy, A.B., and Maywood, E.S. (2003). A clockwork web: circadian timing in brain and periphery, in health and disease. Nat. Rev. Neurosci.4, 649–661.10.1038/nrn1177Search in Google Scholar

Hattar, S., Lucas, R.J., Mrosovsky, N., Thompson, S., Douglas, R.H., Hankins, M.W., Lem, J., Biel, M., Hofmann, F., Foster, R.G., and Yau, K.W. (2003). Melanopsin and rod-cone photoreceptive systems account for all major accessory visual functions in mice. Nature424, 76–81.10.1038/nature01761Search in Google Scholar

Hayashi, S., Okabe-Kado, J., Honma, Y., and Kawajiri, K. (1995). Expression of Ah receptor (TCDD receptor) during human monocytic differentiation. Carcinogenesis16, 1403–1409.10.1093/carcin/16.6.1403Search in Google Scholar

Hoffman, E.C., Reyes, H., Chu, F.F., Sander, F., Conley, L.H., Brooks, B.A., and Hankinson, O. (1991). Cloning of a factor required for activity of the Ah (dioxin) receptor. Science252, 954–958.10.1126/science.1852076Search in Google Scholar

Hogenesch, J.B., Chan, W.K., Jackiw, V.H., Brown, R.C., Gu, Y.Z., Pray-Grant, M., Perdew, G.H., and Bradfield, C.A. (1997). Characterization of a subset of the basic-helix-loop-helix-PAS superfamily that interacts with components of the dioxin signaling pathway. J. Biol. Chem.272, 8581–8593.10.1074/jbc.272.13.8581Search in Google Scholar

Hogenesch, J.B., Gu, Y.Z., Jain, S., and Bradfield, C.A. (1998). The basic-helix-loop-helix-PAS orphan MOP3 forms transcriptionally active complexes with circadian and hypoxia factors. Proc. Natl. Acad. Sci. USA95, 5474–5479.10.1073/pnas.95.10.5474Search in Google Scholar

Honma, S., Kawamoto, T., Takagi, Y., Fujimoto, K., Sato, F., Noshiro, M., Kato, Y., and Honma, K. (2002). Dec1 and Dec2 are regulators of the mammalian molecular clock. Nature419, 841–844.10.1038/nature01123Search in Google Scholar

Hsu, D.S., Zhao, X., Zhao, S., Kazantsev, A., Wang, R.P., Todo, T., Wei, Y.F., and Sancar, A. (1996). Putative human blue-light photoreceptors hCRY1 and hCRY2 are flavoproteins. Biochemistry35, 13871–13877.10.1021/bi962209oSearch in Google Scholar

Huang, P., Rannug, A., Ahlbom, E., Hakansson, H., and Ceccatelli, S. (2000). Effect of 2,3,7,8-tetrachlorodibenzo-p-dioxin on the expression of cytochrome P450 1A1, the aryl hydrocarbon receptor, and the aryl hydrocarbon receptor nuclear translocator in rat brain and pituitary. Toxicol. Appl. Pharmacol.169, 159–167.10.1006/taap.2000.9064Search in Google Scholar

Huang, P., Ceccatelli, S., and Rannug, A. (2002). A study on diurnal mRNA expression of CYP1A1, AHR, ARNT and PER2 in rat pituitary and liver. Environ. Toxicol. Pharmacol.11, 119–126.10.1016/S1382-6689(01)00111-9Search in Google Scholar

Ikeda, M. and Nomura, M. (1997). cDNA cloning and tissue-specific expression of a novel basic helix-loop-helix/PAS protein (BMAL1) and identification of alternatively spliced variants with alternative translation initiation site usage. Biochem. Biophys. Res. Commun.233, 258–264.10.1006/bbrc.1997.6371Search in Google Scholar

Jin, X., Shearman, L.P., Weaver, D.R., Zylka, M.J., de Vries, G.J., and Reppert, S.M. (1999). A molecular mechanism regulating rhythmic output from the suprachiasmatic circadian clock. Cell96, 57–68.10.1016/S0092-8674(00)80959-9Search in Google Scholar

Jones, M.K., Weisenburger, W.P., Sipes, I.G., and Russell, D.H. (1987). Circadian alterations in prolactin, corticosterone, and thyroid hormone levels and down-regulation of prolactin receptor activity by 2,3,7,8-tetrachlorodibenzo-p-dioxin. Toxicol. Appl. Pharmacol.87, 337–350.10.1016/0041-008X(87)90295-XSearch in Google Scholar

Katiyar, S.K., Matsui, M.S., and Mukhtar, H. (2000). Ultraviolet-B exposure of human skin induces cytochromes P450 1A1 and 1B1. J. Invest. Dermatol.114, 328–333.10.1046/j.1523-1747.2000.00876.xSearch in Google Scholar

Kawara, S., Mydlarski, R., Mamelak, A.J., Freed, I., Wang, B., Watanabe, H., Shivji, G., Tavadia, S.K., Suzuki, H., Bjarnason, G.A., et al. (2002). Low-dose ultraviolet B rays alter the mRNA expression of the circadian clock genes in cultured human keratinocytes. J. Invest. Dermatol.119, 1220–1223.10.1046/j.1523-1747.2002.19619.xSearch in Google Scholar

Kay, S.A. (1997). PAS, present, and future: clues to the origins of circadian clocks. Science276, 753–754.10.1126/science.276.5313.753Search in Google Scholar

Kim, B.J., Hwang, D.Y., Kang, T.S., Hwang, J.H., Lim, C.H., Kang, H.G., Goo, J.S., Lee, M.R., Cho, J.S., Sim, W.S., et al. (2002). Expression of human CYP1B1/lacZ fusion gene in ultraviolet-irradiated human keratinocytes. Arch. Dermatol. Res.294, 152–154.10.1007/s00403-002-0307-1Search in Google Scholar

King, D.P. and Takahashi, J.S. (2000). Molecular genetics of circadian rhythms in mammals. Annu. Rev. Neurosci.23, 713–742.10.1146/annurev.neuro.23.1.713Search in Google Scholar

Kitagawa, D., Tanemura, S., Ohata, S., Shimizu, N., Seo, J., Nishitai, G., Watanabe, T., Nakagawa, K., Kishimoto, H., Wada, T., et al. (2002). Activation of extracellular signal-regulated kinase by ultraviolet is mediated through Src-dependent epidermal growth factor receptor phosphorylation. Its implication in an anti-apoptotic function. J. Biol. Chem.277, 366–371.10.1074/jbc.M107110200Search in Google Scholar

Kloss, B., Price, J.L., Saez, L., Blau, J., Rothenfluh, A., Wesley, C.S., and Young, M.W. (1998). The Drosophila clock gene double-time encodes a protein closely related to human casein kinase Iɛ. Cell94, 97–107.10.1016/S0092-8674(00)81225-8Search in Google Scholar

Kocarek, T.A., Schuetz, E.G., and Guzelian, P.S. (1993). Transient induction of cytochrome P450 1A1 mRNA by culture medium component in primary cultures of adult rat hepatocytes. In Vitro Cell. Dev. Biol.29A, 62–66.10.1007/BF02634372Search in Google Scholar PubMed

Kohle, C., Gschaidmeier, H., Lauth, D., Topell, S., Zitzer, H., and Bock, K.W. (1999). 2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD)-mediated membrane translocation of c-Src protein kinase in liver WB-F344 cells. Arch. Toxicol.73, 152–158.10.1007/s002040050600Search in Google Scholar PubMed

Koike, N., Hida, A., Numano, R., Hirose, M., Sakaki, Y., and Tei, H. (1998). Identification of the mammalian homologues of the Drosophila timeless gene, Timeless1. FEBS Lett.441, 427–431.10.1016/S0014-5793(98)01597-XSearch in Google Scholar

Kulms, D., Poppelmann, B., Yarosh, D., Luger, T.A., Krutmann, J., and Schwarz, T. (1999). Nuclear and cell membrane effects contribute independently to the induction of apoptosis in human cells exposed to UVB radiation. Proc. Natl. Acad. Sci. USA96, 7974–7979.10.1073/pnas.96.14.7974Search in Google Scholar

Kume, K., Zylka, M.J., Sriram, S., Shearman, L.P., Weaver, D.R., Jin, X., Maywood, E.S., Hastings, M.H., and Reppert, S.M. (1999). mCRY1 and mCRY2 are essential components of the negative limb of the circadian clock feedback loop. Cell98, 193–205.10.1016/S0092-8674(00)81014-4Search in Google Scholar

Lee, C., Etchegaray, J.P., Cagampang, F.R., Loudon, A.S., and Reppert, S.M. (2001). Posttranslational mechanisms regulate the mammalian circadian clock. Cell107, 855–867.10.1016/S0092-8674(01)00610-9Search in Google Scholar

Lee, D.M., Gasparro, F.P., Wang, X.J., Kopec, C., DeLeo, K., and Sumpio, B.E. (2002). Photochemotherapy of vascular cells with 8-methoxypsoralen and visible light: differential effects on endothelial and smooth muscle cells. Photodermatol. Photoimmunol. Photomed.18, 244–252.10.1034/j.1600-0781.2002.02770.xSearch in Google Scholar

Levine-Fridman, A., Chen, L., and Elferink, C.J. (2004). Cytochrome P4501A1 promotes G1 phase cell cycle progression by controlling aryl hydrocarbon receptor activity. Mol. Pharmacol.65, 461–469.10.1124/mol.65.2.461Search in Google Scholar

Lorenzen, A., Kennedy, S.W., Bastien, L.J., and Hahn, M.E. (1997). Halogenated aromatic hydrocarbon-mediated porphyrin accumulation and induction of cytochrome P4501A in chicken embryo hepatocytes. Biochem. Pharmacol.53, 373–384.10.1016/S0006-2952(96)00739-3Search in Google Scholar

Ma, Q. and Whitlock, J.P. Jr. (1996). The aromatic hydrocarbon receptor modulates the Hepa 1c1c7 cell cycle and differentiated state independently of dioxin. Mol. Cell. Biol.16, 2144–2150.10.1128/MCB.16.5.2144Search in Google Scholar

Menaker, M. (2003). Circadian rhythms. Circadian photoreception. Science299, 213–214.Search in Google Scholar

Miller, C.C., Hale, P., and Pentland, A.P. (1994). Ultraviolet B injury increases prostaglandin synthesis through a tyrosine kinase-dependent pathway. Evidence for UVB-induced epidermal growth factor receptor activation. J. Biol. Chem.269, 3529–3533.Search in Google Scholar

Miller, J.D., Settachan, D., Frame, L., and Dickerson, R.L. (1999). 2,3,7,8-Tetrachlorodibenzo-p-dioxin phase advances the deer mouse (Peromyscus maniculatus) circadian rhythm by altering expression of clock proteins. Organohalogen Compounds42, 23–28.Search in Google Scholar

Mimura, J. and Fujii-Kuriyama, Y. (2003). Functional role of AhR in the expression of toxic effects by TCDD. Biochim. Biophys. Acta1619, 263–268.10.1016/S0304-4165(02)00485-3Search in Google Scholar

Miyamoto, Y. and Sancar, A. (1998). Vitamin B2-based blue-light photoreceptors in the retinohypothalamic tract as the photoactive pigments for setting the circadian clock in mammals. Proc. Natl. Acad. Sci. USA95, 6097–6102.10.1073/pnas.95.11.6097Search in Google Scholar PubMed PubMed Central

Monk, S.A., Denison, M.S., and Rice, R.H. (2001). Transient expression of CYP1A1 in rat epithelial cells cultured in suspension. Arch. Biochem. Biophys.393, 154–162.10.1006/abbi.2001.2475Search in Google Scholar

Mukhtar, H., DelTito, B.J. Jr., Matgouranis, P.M., Das, M., Asokan, P., and Bickers, D.R. (1986). Additive effects of ultraviolet B and crude coal tar on cutaneous carcinogen metabolism: possible relevance to the tumorigenicity of the Goeckerman regimen. J. Invest. Dermatol.87, 348–353.10.1111/1523-1747.ep12524446Search in Google Scholar

Nebert, D.W. (1991). Proposed role of drug-metabolizing enzymes: regulation of steady state levels of the ligands that effect growth, homeostasis, differentiation, and neuroendocrine functions. Mol. Endocrinol.5, 1203–1214.10.1210/mend-5-9-1203Search in Google Scholar

Nebert, D.W., Roe, A.L., Dieter, M.Z., Solis, W.A., Yang, Y., and Dalton, T.P. (2000). Role of the aromatic hydrocarbon receptor and [Ah] gene battery in the oxidative stress response, cell cycle control, and apoptosis. Biochem. Pharmacol.59, 65–85.10.1016/S0006-2952(99)00310-XSearch in Google Scholar

Nebert, D.W., Dalton, T.P., Okey, A.B., and Gonzalez, F.J. (2004). Role of aryl hydrocarbon receptor-mediated induction of the CYP1 enzymes in environmental toxicity and cancer. J. Biol. Chem.279, 23847–23850.10.1074/jbc.R400004200Search in Google Scholar

Nemoto, N. and Sakurai, J. (1991). Increase of CYP1A1 mRNA and AHH activity by inhibitors of either protein or RNA synthesis in mouse hepatocytes in primary culture. Carcinogenesis12, 2115–2121.10.1093/carcin/12.11.2115Search in Google Scholar

Öberg, M., Bergander, L., Hakansson, H., Rannug, U., and Rannug, A. (2005). Identification of the tryptophan photoproduct 6-formylindolo[3,2-b]carbazole, in cell culture medium, as a factor that controls the background aryl hydrocarbon receptor activity. Toxicol. Sci.85, 935–943.10.1093/toxsci/kfi154Search in Google Scholar

Paigen, B., Ward, E., Reilly, A., Houten, L., Gurtoo, H.L., Minowada, J., Steenland, K., Havens, M.B., and Sartori, P. (1981). Seasonal variation of aryl hydrocarbon hydroxylase activity in human lymphocytes. Cancer Res.41, 2757–2761.Search in Google Scholar

Paine, A.J. and Francis, J.E. (1980). The induction of benzo[a]pyrene-3-mono-oxygenase by singlet oxygen in liver cell culture is mediated by oxidation products of histidine. Chem. Biol. Interact.30, 343–353.10.1016/0009-2797(80)90057-5Search in Google Scholar

Paine, A.J. (1976). Induction of benzo[a]pyrene mono-oxygenase in liver cell culture by the photochemical generation of active oxygen species. Evidence for the involvement of singlet oxygen and the formation of a stable inducing intermediate. Biochem. J.158, 109–117.Search in Google Scholar

Petersen, S.L., Curran, M.A., Marconi, S.A., Carpenter, C.D., Lubbers, L.S., and McAbee, M.D. (2000). Distribution of mRNAs encoding the arylhydrocarbon receptor, arylhydrocarbon receptor nuclear translocator, and arylhydrocarbon receptor nuclear translocator-2 in the rat brain and brainstem. J. Comp. Neurol.427, 428–439.10.1002/1096-9861(20001120)427:3<428::AID-CNE9>3.0.CO;2-PSearch in Google Scholar

Pineau, T., Costet, P., Puel, O., Pfohl-Leszkowicz, A., Lesca, P., Alvinerie, M., and Galtier, P. (1998). Knockout animals in toxicology: assessment of toxin bioactivation pathways using mice deficient in xenobiotic metabolizing enzymes. Toxicol. Lett.102–103, 459–464.10.1016/S0378-4274(98)00339-7Search in Google Scholar

Plewka, A., Czekaj, P., Kaminski, M., and Plewka, D. (1992). Circadian changes of cytochrome P-450-dependent monooxygenase system in the rat liver. Pol. J. Pharmacol. Pharm.44, 655–661.Search in Google Scholar

Preitner, N., Damiola, F., Lopez-Molina, L., Zakany, J., Duboule, D., Albrecht, U., and Schibler, U. (2002). The orphan nuclear receptor REV-ERBα controls circadian transcription within the positive limb of the mammalian circadian oscillator. Cell110, 251–260.10.1016/S0092-8674(02)00825-5Search in Google Scholar

Puga, A., Xia, Y., and Elferink, C. (2002). Role of the aryl hydrocarbon receptor in cell cycle regulation. Chem. Biol. Interact.141, 117–130.10.1016/S0009-2797(02)00069-8Search in Google Scholar

Rannug, A., Rannug, U., Rosenkranz, H.S., Winqvist, L., Westerholm, R., Agurell, E., and Grafstrom, A.K. (1987). Certain photooxidized derivatives of tryptophan bind with very high affinity to the Ah receptor and are likely to be endogenous signal substances. J. Biol. Chem.262, 15422–15427.10.1016/S0021-9258(18)47743-5Search in Google Scholar

Rannug, U., Rannug, A., Sjoberg, U., Li, H., Westerholm, R., and Bergman, J. (1995). Structure elucidation of two tryptophan-derived, high affinity Ah receptor ligands. Chem. Biol.2, 841–845.10.1016/1074-5521(95)90090-XSearch in Google Scholar

RayChaudhuri, B., Nebert, D.W., and Puga, A. (1990). The murine Cyp1a-1 gene negatively regulates its own transcription and that of other members of the aromatic hydrocarbon-responsive [Ah] gene battery. Mol. Endocrinol.4, 1773–1781.10.1210/mend-4-12-1773Search in Google Scholar PubMed

Reiners, J.J. Jr., Cantu, A.R., and Pavone, A. (1990). Modulation of constitutive cytochrome P-450 expression in vivo and in vitro in murine keratinocytes as a function of differentiation and extracellular Ca2+ concentration. Proc. Natl. Acad. Sci. USA87, 1825–1829.10.1073/pnas.87.5.1825Search in Google Scholar PubMed PubMed Central

Richardson, V.M., Santostefano, M.J., and Birnbaum, L.S. (1998). Daily cycle of bHLH-PAS proteins, Ah receptor and Arnt, in multiple tissues of female Sprague-Dawley rats. Biochem. Biophys. Res. Commun.252, 225–231.10.1006/bbrc.1998.9634Search in Google Scholar PubMed

Ripperger, J.A. and Schibler, U. (2006). Rhythmic CLOCK-BMAL1 binding to multiple E-box motifs drives circadian Dbp transcription and chromatin transitions. Nat. Genet.38, 369–374.10.1038/ng1738Search in Google Scholar PubMed

Rivera, S.P., Saarikoski, S.T., and Hankinson, O. (2002). Identification of a novel dioxin-inducible cytochrome P450. Mol. Pharmacol.61, 255–259.10.1124/mol.61.2.255Search in Google Scholar PubMed

Rivera, S.P., Choi, H.H., Chapman, B., Whitekus, M.J., Terao, M., Garattini, E., and Hankinson, O. (2005). Identification of aldehyde oxidase 1 and aldehyde oxidase homologue 1 as dioxin-inducible genes. Toxicology207, 401–409.10.1016/j.tox.2004.10.009Search in Google Scholar PubMed

Roblin, S., Okey, A.B., and Harper, P.A. (2004). AH receptor antagonist inhibits constitutive CYP1A1 and CYP1B1 expression in rat BP8 cells. Biochem. Biophys. Res. Commun.317, 142–148.10.1016/j.bbrc.2004.03.016Search in Google Scholar

Rosette, C. and Karin, M. (1996). Ultraviolet light and osmotic stress: activation of the JNK cascade through multiple growth factor and cytokine receptors. Science274, 1194–1197.10.1126/science.274.5290.1194Search in Google Scholar

Sadar, M.D. and Andersson, T.B. (2001). Regulation of cytochrome P450 in a primary culture of rainbow trout hepatocytes. In Vitro Cell. Dev. Biol. Anim.37, 180–184.10.1290/1071-2690(2001)037<0180:ROCPIA>2.0.CO;2Search in Google Scholar

Sadek, C.M. and Allen-Hoffmann, B.L. (1994a). Cytochrome P450IA1 is rapidly induced in normal human keratinocytes in the absence of xenobiotics. J. Biol. Chem.269, 16067–16074.10.1016/S0021-9258(17)33974-1Search in Google Scholar

Sadek, C.M. and Allen-Hoffmann, B.L. (1994b). Suspension-mediated induction of Hepa 1c1c7 Cyp1a-1 expression is dependent on the Ah receptor signal transduction pathway. J. Biol. Chem.269, 31505–31509.10.1016/S0021-9258(18)31723-XSearch in Google Scholar

Sakamoto, K., Nagase, T., Fukui, H., Horikawa, K., Okada, T., Tanaka, H., Sato, K., Miyake, Y., Ohara, O., Kako, K., and Ishida, N. (1998). Multitissue circadian expression of rat period homolog (rPer2) mRNA is governed by the mammalian circadian clock, the suprachiasmatic nucleus in the brain. J. Biol. Chem.273, 27039–27042.10.1074/jbc.273.42.27039Search in Google Scholar

Sancar, A. (2004). Regulation of the mammalian circadian clock by cryptochrome. J. Biol. Chem.279, 34079–34082.10.1074/jbc.R400016200Search in Google Scholar

Schecter, A., Birnbaum, L., Ryan, J.J., and Constable, J.D. (2006). Dioxins: an overview. Environ. Res.101, 419–428.10.1016/j.envres.2005.12.003Search in Google Scholar

Schrenk, D. (1998). Impact of dioxin-type induction of drug-metabolizing enzymes on the metabolism of endo- and xenobiotics. Biochem. Pharmacol.55, 1155–1162.Search in Google Scholar

Segner, H., Behrens, A., Joyce, E.M., Schirmer, K., and Bols, N.C. (2000). Transient induction of 7-ethoxyresorufin-O-de-ethylase (EROD) activity by medium change in the rainbow trout liver cell line, RTL-W1. Mar. Environ. Res.50, 489–493.10.1016/S0141-1136(00)00123-9Search in Google Scholar

Shearman, L.P., Zylka, M.J., Weaver, D.R., Kolakowski, L.F. Jr., and Reppert, S.M. (1997). Two period homologs: circadian expression and photic regulation in the suprachiasmatic nuclei. Neuron19, 1261–1269.10.1016/S0896-6273(00)80417-1Search in Google Scholar

Shigeyoshi, Y., Taguchi, K., Yamamoto, S., Takekida, S., Yan, L., Tei, H., Moriya, T., Shibata, S., Loros, J.J., Dunlap, J.C., and Okamura, H. (1997). Light-induced resetting of a mammalian circadian clock is associated with rapid induction of the mPer1 transcript. Cell91, 1043–1053.10.1016/S0092-8674(00)80494-8Search in Google Scholar

Shiizaki, K., Ohsako, S., Koyama, T., Nagata, R., Yonemoto, J., and Tohyama, C. (2005). Lack of CYP1A1 expression is involved in unresponsiveness of the human hepatoma cell line SK-HEP-1 to dioxin. Toxicol. Lett.160, 22–33.10.1016/j.toxlet.2005.06.003Search in Google Scholar

Shimizu, Y., Nakatsuru, Y., Ichinose, M., Takahashi, Y., Kume, H., Mimura, J., Fujii-Kuriyama, Y., and Ishikawa, T. (2000). Benzo[a]pyrene carcinogenicity is lost in mice lacking the aryl hydrocarbon receptor. Proc. Natl. Acad. Sci. USA97, 779–782.10.1073/pnas.97.2.779Search in Google Scholar

Shuster, S., Rawlins, M.D., Chapman, P.H., and Rogers, S. (1980). Decreased epidermal aryl hydrocarbon hydroxylase and localized pustular psoriasis. Br. J. Dermatol.103, 23–26.10.1111/j.1365-2133.1980.tb15833.xSearch in Google Scholar

Sindhu, R.K., Reisz-Porszasz, S., Hankinson, O., and Kikkawa, Y. (1996). Induction of cytochrome P4501A1 by photooxidized tryptophan in Hepa lclc7 cells. Biochem. Pharmacol.52, 1883–1893.10.1016/S0006-2952(97)81491-8Search in Google Scholar

Singh, S.S., Hord, N.G., and Perdew, G.H. (1996). Characterization of the activated form of the aryl hydrocarbon receptor in the nucleus of HeLa cells in the absence of exogenous ligand. Arch. Biochem. Biophys.329, 47–55.10.1006/abbi.1996.0190Search in Google Scholar

Steeves, T.D., King, D.P., Zhao, Y., Sangoram, A.M., Du, F., Bowcock, A.M., Moore, R.Y., and Takahashi, J.S. (1999). Molecular cloning and characterization of the human CLOCK gene: expression in the suprachiasmatic nuclei. Genomics57, 189–200.10.1006/geno.1998.5675Search in Google Scholar

Sun, Z.S., Albrecht, U., Zhuchenko, O., Bailey, J., Eichele, G., and Lee, C.C. (1997). RIGUI, a putative mammalian ortholog of the Drosophila period gene. Cell90, 1003–1011.10.1016/S0092-8674(00)80366-9Search in Google Scholar

Swanson, H.I. (2004). Cytochrome P450 expression in human keratinocytes: an aryl hydrocarbon receptor perspective. Chem. Biol. Interact.149, 69–79.10.1016/j.cbi.2004.08.006Search in Google Scholar PubMed

Takumi, T., Matsubara, C., Shigeyoshi, Y., Taguchi, K., Yagita, K., Maebayashi, Y., Sakakida, Y., Okumura, K., Takashima, N., and Okamura, H. (1998a). A new mammalian period gene predominantly expressed in the suprachiasmatic nucleus. Genes Cells3, 167–176.10.1046/j.1365-2443.1998.00178.xSearch in Google Scholar PubMed

Takumi, T., Taguchi, K., Miyake, S., Sakakida, Y., Takashima, N., Matsubara, C., Maebayashi, Y., Okumura, K., Takekida, S., Yamamoto, S., et al. (1998b). A light-independent oscillatory gene mPer3 in mouse SCN and OVLT. EMBO J.17, 4753–4759.10.1093/emboj/17.16.4753Search in Google Scholar

Tauchi, M., Hida, A., Negishi, T., Katsuoka, F., Noda, S., Mimura, J., Hosoya, T., Yanaka, A., Aburatani, H., Fujii-Kuriyama, Y., et al. (2005). Constitutive expression of aryl hydrocarbon receptor in keratinocytes causes inflammatory skin lesions. Mol. Cell. Biol.25, 9360–9368.10.1128/MCB.25.21.9360-9368.2005Search in Google Scholar

Taylor, B.L. and Zhulin, I.B. (1999). PAS domains: internal sensors of oxygen, redox potential, and light. Microbiol. Mol. Biol. Rev.63, 479–506.10.1128/MMBR.63.2.479-506.1999Search in Google Scholar

Tei, H., Okamura, H., Shigeyoshi, Y., Fukuhara, C., Ozawa, R., Hirose, M., and Sakaki, Y. (1997). Circadian oscillation of a mammalian homologue of the Drosophila period gene. Nature389, 512–516.10.1038/39086Search in Google Scholar

Tuominen, R., Warholm, M., Moller, L., and Rannug, A. (2003). Constitutive CYP1B1 mRNA expression in human blood mononuclear cells in relation to gender, genotype, and environmental factors. Environ. Res.93, 138–148.10.1016/S0013-9351(03)00090-2Search in Google Scholar

Tyrrell, R.M. (1996a). Activation of mammalian gene expression by the UV component of sunlight – from models to reality. Bioessays18, 139–148.10.1002/bies.950180210Search in Google Scholar

Tyrrell, R.M. (1996b). UV activation of mammalian stress proteins. EXS77, 255–271.10.1007/978-3-0348-9088-5_17Search in Google Scholar

Unsal-Kacmaz, K., Mullen, T.E., Kaufmann, W.K., and Sancar, A. (2005). Coupling of human circadian and cell cycles by the timeless protein. Mol. Cell. Biol.25, 3109–3116.10.1128/MCB.25.8.3109-3116.2005Search in Google Scholar

Vasiliou, V., Puga, A., and Nebert, D.W. (1992). Negative regulation of the murine cytosolic aldehyde dehydrogenase-3 (Aldh-3c) gene by functional CYP1A1 and CYP1A2 proteins. Biochem. Biophys. Res. Commun.187, 413–419.10.1016/S0006-291X(05)81508-6Search in Google Scholar

Villard, P.H., Sampol, E., Elkaim, J.L., Puyoou, F., Casanova, D., Seree, E., Durand, A., and Lacarelle, B. (2002). Increase of CYP1B1 transcription in human keratinocytes and HaCaT cells after UV-B exposure. Toxicol. Appl. Pharmacol.178, 137–143.10.1006/taap.2001.9335Search in Google Scholar PubMed

Vogel, C., Boerboom, A.M., Baechle, C., El-Bahay, C., Kahl, R., Degen, G.H., and Abel, J. (2000). Regulation of prostaglandin endoperoxide H synthase-2 induction by dioxin in rat hepatocytes: possible c-Src-mediated pathway. Carcinogenesis21, 2267–2274.10.1093/carcin/21.12.2267Search in Google Scholar

Wager-Smith, K. and Kay, S.A. (2000). Circadian rhythm genetics: from flies to mice to humans. Nat. Genet.26, 23–27.10.1038/79134Search in Google Scholar

Wei, Y.D., Helleberg, H., Rannug, U., and Rannug, A. (1998). Rapid and transient induction of CYP1A1 gene expression in human cells by the tryptophan photoproduct 6-formylindolo[3,2-b]carbazole. Chem. Biol. Interact.110, 39–55.10.1016/S0009-2797(97)00111-7Search in Google Scholar

Wei, Y.D., Rannug, U., and Rannug, A. (1999). UV-induced CYP1A1 gene expression in human cells is mediated by tryptophan. Chem. Biol. Interact.118, 127–140.10.1016/S0009-2797(98)00118-5Search in Google Scholar

Wei, Y.D., Bergander, L., Rannug, U., and Rannug, A. (2000). Regulation of CYP1A1 transcription via the metabolism of the tryptophan-derived 6-formylindolo[3,2-b]carbazole. Arch. Biochem. Biophys.383, 99–107.10.1006/abbi.2000.2037Search in Google Scholar PubMed

Weiss, C., Kolluri, S.K., Kiefer, F., and Gottlicher, M. (1996). Complementation of Ah receptor deficiency in hepatoma cells: negative feedback regulation and cell cycle control by the Ah receptor. Exp. Cell Res.226, 154–163.10.1006/excr.1996.0214Search in Google Scholar PubMed

Wolff, S., Harper, P.A., Wong, J.M., Mostert, V., Wang, Y., and Abel, J. (2001). Cell-specific regulation of human aryl hydrocarbon receptor expression by transforming growth factor-β1. Mol. Pharmacol.59, 716–724.10.1124/mol.59.4.716Search in Google Scholar PubMed

Yang, C., Boucher, F., Tremblay, A., and Michaud, J.L. (2004). Regulatory interaction between arylhydrocarbon receptor and SIM1, two basic helix-loop-helix PAS proteins involved in the control of food intake. J. Biol. Chem.279, 9306–9312.10.1074/jbc.M307927200Search in Google Scholar PubMed

Zanello, S.B., Jackson, D.M., and Holick, M.F. (2000). Expression of the circadian clock genes clock and period1 in human skin. J. Invest. Dermatol.115, 757–760.10.1046/j.1523-1747.2000.00121.xSearch in Google Scholar PubMed

Zhang, S., Qin, C., and Safe, S.H. (2003). Flavonoids as aryl hydrocarbon receptor agonists/antagonists: effects of structure and cell context. Environ. Health Perspect.111, 1877–1882.10.1289/ehp.6322Search in Google Scholar PubMed PubMed Central

Zylka, M.J., Shearman, L.P., Weaver, D.R., and Reppert, S.M. (1998). Three period homologs in mammals: differential light responses in the suprachiasmatic circadian clock and oscillating transcripts outside of brain. Neuron20, 1103–1110.10.1016/S0896-6273(00)80492-4Search in Google Scholar

Published Online: 2006-09-14
Published in Print: 2006-09-01

©2006 by Walter de Gruyter Berlin New York

Downloaded on 26.4.2024 from https://www.degruyter.com/document/doi/10.1515/BC.2006.143/html
Scroll to top button