Skip to content
BY-NC-ND 4.0 license Open Access Published by De Gruyter Open Access December 22, 2021

Understanding the dynamics of Arctic animal migrations in a changing world

  • Sarah C. Davidson EMAIL logo and Emily Cornelius Ruhs
From the journal Animal Migration

Abstract

This is submitted as an introduction to the special collection on, “Arctic Migrations in a Changing World”.

References

[1] Callaghan T. V, Björn L.O., Chernov Y., Chapin T., Christensen T.R., Huntley B., et al., Biodiversity, distributions and adaptations of Arctic species in the context of environmental change., Ambio, 2004, 33, 404–41710.1579/0044-7447-33.7.404Search in Google Scholar PubMed

[2] Gilg O., Kovacs K.M., Aars J., Fort J., Gauthier G., Grémillet D., et al., Climate change and the ecology and evolution of Arctic vertebrates, Ann. N. Y. Acad. Sci., 2012, 1249, 166–19010.1111/j.1749-6632.2011.06412.xSearch in Google Scholar PubMed

[3] Wikelski M., Tarlow E.M., Raim A., Diehl R.H., Larkin R.P., Visser G.H., Costs of migration in free-flying songbirds, Nature, 2003, 423, 70410.1038/423704aSearch in Google Scholar PubMed

[4] Egevang C., Stenhouse I.J., Phillips R.A., Petersen A., Fox J.W., Silk J.R.D., Tracking of Arctic terns Sterna paradisaea reveals longest animal migration, Proc. Natl. Acad. Sci., 2010, 107, 2078–208110.1073/pnas.0909493107Search in Google Scholar PubMed PubMed Central

[5] Johnson S.R., Herter D.R., Bird migration in the Arctic: A review, In: Bird migration, Springer Berlin Heidelberg, 1990, 22–4310.1007/978-3-642-74542-3_3Search in Google Scholar

[6] CAFF, Arctic Biodiversity Assessment. Status and Trends in Arctic Biodiversity. Conservation of Arctic Flora and Fauna (CAFF), Akkureyri, Iceland, 2013Search in Google Scholar

[7] Serreze M.C., Barry R.G., Processes and impacts of Arctic amplification: a research analysis., Glob. Planet. Change, 2011, 77, 85–9610.1016/j.gloplacha.2011.03.004Search in Google Scholar

[8] Becerra-Valdivia L., Higham T., The timing and effect of the earliest human arrivals in North America, Nat., 2020, 584, 93–9710.1038/s41586-020-2491-6Search in Google Scholar PubMed

[9] O’Corry-Crowe G., Climate change and the molecular ecology of Arctic marine mammals, Ecol. Appl., 2008, 18, S56–S7610.1890/06-0795.1Search in Google Scholar PubMed

[10] Joly K., Gurarie E., Sorum M.S., Kaczensky P., Cameron M.D., Jakes A.F., et al., Longest terrestrial migrations and movements around the world, Sci. Rep., 2019, 9, 1–1010.1038/s41598-019-51884-5Search in Google Scholar PubMed PubMed Central

[11] AMAP, Arctic Climate Change Update 2021: Key trends and impacts: Summary for policy-makers, AMAP, Tromsø, Norway, 2021Search in Google Scholar

[12] Masson-Delmotte V., Zhai P., Pirani A., Connors S.L., Péan C., Berger S., et al., editors, Climate Change 2021: The physical science basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change., n.d.Search in Google Scholar

[13] IEA, Global Energy Review 2021, Paris, 2021Search in Google Scholar

[14] Box J.E., Colgan W.T., Christensen T.R., Schmidt N.M., Lund M., Parmentier F.-J.W., et al., Key indicators of Arctic climate change: 1971–2017, Environ. Res. Lett., 2019, 14, 04501010.1088/1748-9326/aafc1bSearch in Google Scholar

[15] Post E., Steinman B.A., Mann M.E., Acceleration of phenological advance and warming with latitude over the past century, Sci. Rep., 2018, 8, 1–810.1038/s41598-018-22258-0Search in Google Scholar PubMed PubMed Central

[16] Kubelka V., Sandercock B.K., Székely T., Freckleton R.P., Animal migration to northern latitudes: Environmental changes and increasing threats, Trends Ecol. Evol., 202110.1016/j.tree.2021.08.010Search in Google Scholar PubMed

[17] Møller A.P., Rubolini D., Lehikoinen E., Populations of migratory bird species that did not show a phenological response to climate change are declining, Proc. Natl. Acad. Sci., 2008, 105, 16195–1620010.1073/pnas.0803825105Search in Google Scholar PubMed PubMed Central

[18] Post E., Forchhammer M.C., Climate change reduces reproductive success of an Arctic herbivore through trophic mismatch, P. Roy. Soc. B-Biol. Sci., 2008, 363, 2369–237510.1098/rstb.2007.2207Search in Google Scholar PubMed PubMed Central

[19] Fossheim M., Primicerio R., Johannesen E., Ingvaldsen R.B., Aschan M.M., Dolgov A. V., Recent warming leads to a rapid borealization of fish communities in the Arctic, Nat. Clim. Chang., 2015, 5, 673–67710.1038/nclimate2647Search in Google Scholar

[20] Moore S.E., Huntington H.P., Arctic marine mammals and climate change: Impacts and resilience, Ecol. Appl., 2008, 18, S157–S16510.1890/06-0571.1Search in Google Scholar PubMed

[21] Wauchope H.S., Shaw J.D., Varpe Ø., Lappo E.G., Boertmann D., Lanctot R.B., et al., Rapid climate-driven loss of breeding habitat for Arctic migratory birds, Glob. Chang. Biol., 2017, 23, 1085–109410.1111/gcb.13404Search in Google Scholar PubMed

[22] van Gils J.A., Lisovski S., Lok T., Meissner W., Ożarowska A., de Fouw J., et al., Body shrinkage due to Arctic warming reduces red knot fitness in tropical wintering range, Science, 2016, 352, 819–82110.1126/science.aad6351Search in Google Scholar PubMed

[23] Rutz C., Hays G.C., New frontiers in biologging science, Biol. Lett., 2009, 5, 289–29210.1098/rsbl.2009.0089Search in Google Scholar PubMed PubMed Central

[24] Bellard C., Bertelsmeier C., Leadley P., Thuiller W., Courchamp F., Impacts of climate change on the future of biodiversity, Ecol. Lett., 2012, 15, 365–37710.1111/j.1461-0248.2011.01736.xSearch in Google Scholar PubMed PubMed Central

[25] Parmesan C., Ecological and evolutionary responses to recent climate change, Annu. Rev. Ecol. Evol. Syst., 2006, 37, 637–66910.1146/annurev.ecolsys.37.091305.110100Search in Google Scholar

[26] Søreide J.E., Leu E., Berge J., Graeve M., Falk-Petersen S., Timing of blooms, algal food quality and Calanus glacialis reproduction and growth in a changing Arctic, Glob. Chang. Biol., 2010, 16, 3154–316310.1111/j.1365-2486.2010.02175.xSearch in Google Scholar

[27] Doiron M., Gauthier G., Lévesque E., Trophic mismatch and its effects on the growth of young in an Arctic herbivore., Glob. Chang. Biol., 2015, 21, 4364–437610.1111/gcb.13057Search in Google Scholar PubMed

[28] Gilg O., Sittler B., Hanski I., Climate change and cyclic predator-prey population dynamics in the high Arctic, Glob. Chang. Biol., 2009, 15, 2634–265210.1111/j.1365-2486.2009.01927.xSearch in Google Scholar

[29] Harvell D., Altizer S., Cattadori I.M., Harrington L., Weil E., Climate change and wildlife diseases: When does the host matter the most?, Ecology, 2009, 90, 912–92010.1890/08-0616.1Search in Google Scholar PubMed

[30] Altizer S., Animal migration and infectious disease risk, Science, 2011, 331, 296–30210.1126/science.1194694Search in Google Scholar PubMed

[31] Pagano A.M., Williams T.M., Physiological consequences of Arctic sea ice loss on large marine carnivores: unique responses by polar bears and narwhals, J. Exp. Biol., 2021, 22410.1242/jeb.228049Search in Google Scholar PubMed

[32] Kovacs K.M., Belikov S., Boveng P., Desportes G., Ferguson S., Hansen R., et al., State of the Arctic Marine Biodiversity Report (SAMBR) update: marine mammals. Conservation of Arctic Flora and Fauna International Secretariat (CAFF), Akureyri, Iceland, 2021Search in Google Scholar

[33] Aronsson M., Heiōmarsson S., Jóhannesdóttir H., Barry T., Braa J., Burns C.T., et al., State of the Arctic Terrestrial Biodiversity Report - Arctic biodiversity, Conservation of Arctic Flora and Fauna (CAFF), Iceland, 2021Search in Google Scholar

[34] CAFF, State of the Arctic Marine Biodiversity Report update: seabirds. Conservation of Arctic Flora and Fauna (CAFF), Akureyri, Iceland, 2021Search in Google Scholar

[35] Davidson S.C., Bohrer G., Gurarie E., LaPoint S., Mahoney P.J., Boelman N.T., et al., Ecological insights from three decades of animal movement tracking across a changing Arctic, Science, 2020, 370, 712–715Search in Google Scholar

[36] Hussey N.E., Kessel S.T., Aarestrup K., Cooke S.J., Cowley P.D., Fisk A.T., et al., Aquatic animal telemetry: A panoramic window into the underwater world, Science, 2015, 348, 125564210.1126/science.1255642Search in Google Scholar PubMed

[37] Baumgartner M.F., Stafford K.M., Winsor P., Statscewich H., Fratantoni D.M., Glider-based passive acoustic monitoring in the Arctic, Mar. Technol. Soc. J., 2014, 48, 40–5110.4031/MTSJ.48.5.2Search in Google Scholar

[38] Oliver R.Y., Ellis D.P.W., Chmura H.E., Krause J.S., Pérez J.H., Sweet S.K., et al., Eavesdropping on the Arctic: Automated bioacoustics reveal dynamics in songbird breeding phenology, Sci. Adv., 2018, 4, eaaq108410.1126/sciadv.aaq1084Search in Google Scholar PubMed PubMed Central

[39] Hodgson J.C., Mott R., Baylis S.M., Pham T.T., Wotherspoon S., Kilpatrick A.D., et al., Drones count wildlife more accurately and precisely than humans, Methods Ecol. Evol., 2018, 9, 1160–116710.1111/2041-210X.12974Search in Google Scholar

[40] Hansen B.K., Jacobsen M.W., Middelboe A.L., Preston C.M., Marin R., Bekkevold D., et al., Remote, autonomous real-time monitoring of environmental DNA from commercial fish, Sci. Rep., 2020, 10, 1327210.1038/s41598-020-70206-8Search in Google Scholar PubMed PubMed Central

[41] Strøm H., Descamps S., Ekker M., Fauchald P., Moe B., Tracking the movements of North Atlantic seabirds: steps towards a better understanding of population dynamics and marine ecosystem conservation, Mar. Ecol. Prog. Ser., 2021, 676, 97–11610.3354/meps13801Search in Google Scholar

[42] Seiler A., Olsson M., Wildlife deterrent methods for railways: An experimental study, Railw. Ecol., 2017, 277–29110.1007/978-3-319-57496-7_17Search in Google Scholar

[43] Heidorn P.B., Shedding light on the dark data in the long tail of science, Libr. Trends, 2008, 57, 280–29910.1353/lib.0.0036Search in Google Scholar

[44] Hoffmayer E.R., McKinney J.A., Franks J.S., Hendon J.M., Driggers W.B. III, Falterman B.J., et al., Seasonal occurrence, horizontal movements, and habitat use patterns of whale sharks (Rhincodon typus) in the Gulf of Mexico, Front. Mar. Sci., 2021, 7, 107010.3389/fmars.2020.598515Search in Google Scholar

[45] Parham J., Stewart C., Crall J., Rubenstein D., Holmberg J., Berger-Wolf T., An animal detection pipeline for identification, In: 2018 IEEE Winter Conference on Applications of Computer Vision (WACV), 2018, 1075–108310.1109/WACV.2018.00123Search in Google Scholar

[46] GBIF, (Global Biodiversity Information Facility), GBIF Occur. Download, 2021. doi: 10.15468/dl.e8ge4ySearch in Google Scholar

[47] GBIF, (Global Biodiversity Information Facility), GBIF Occur. Download, 2021. doi: 10.15468/dl.2g4u9sSearch in Google Scholar

[48] Barnes, R., Sahr K., ddggridR: Discrete Global Grids for R. R package version 2.0.4., 2017Search in Google Scholar

Received: 2021-10-27
Accepted: 2021-11-15
Published Online: 2021-12-22

© 2021 Sarah C. Davidson et al., published by De Gruyter

This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

Downloaded on 27.5.2024 from https://www.degruyter.com/document/doi/10.1515/ami-2020-0114/html
Scroll to top button