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Abstract—Causality analysis is an effective technique for
investigating and detecting cyber attacks. However, by focus-
ing on auditing at the Operating System level, existing causal
analysis techniques lack visibility into important application-level
semantics, such as configuration changes that control application
runtime behavior. This leads to incorrect attack attribution and
half-baked tracebacks.

In this work, we propose Dossier, a specialized provenance
tracker that enhances the visibility of the Linux auditing in-
frastructure. By providing additional hooks into the system,
Dossier can generate a holistic view of the target application’s
event history and causal chains, particularly those pertaining to
configuration changes that are among the most common attack
vectors observed in the real world. The extra vantage points in
Dossier enable forensic investigators to bridge the semantic gap
and correctly piece together attack fragments. Dossier leverages
the versatility of information flow tracking and system call
introspection to track all configuration changes, including both
dynamic modifications that directly update configuration-related
program variables and revisions to configuration files on disk
with negligible runtime overhead (less than 7%). Evaluation on
realistic workloads and real-world attack scenarios shows that
Dossier can effectively reason about configuration-based attacks
and accurately reconstruct the whole attack stories.

I. INTRODUCTION

Cyber attacks resulting from improperly configured soft-
ware have recently gained significant traction in the cyber
security community. For instance, the OWASP Top-10 list,
a well-known index of web application vulnerabilities, has
consistently ranked security misconfigurations as one of the
primary reasons for data breaches [22], [32], including several
high-profile incidents that have recently been in the lime-
light [18], [1], [31], [27]. Similarly, CAPEC, which manages
a taxonomy database of attack patterns and classifications,
has categorized configuration-based attacks as one of the
few high-severity classes that can considerably weaken the
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security posture of an organization [35]. Due to their preva-
lence and severity, configuration-based attacks have become
major security threats, gaining increasing notoriety in hacking
communities with every successful breach.

Configuration-based attacks lead to disastrous financial and
business consequences, such as data breaches and system
compromises. For example, in 2015, 35,000 Internet-facing in-
stances of MongoDB were discovered to be publicly accessible
without any form of authentication [36]. The total amount of
data that was exposed as a result of this misconfiguration to-
taled roughly 680TB. Even though MongoDB provides ample
security mechanisms to mitigate this problem, broken authen-
tication was nonetheless widespread due to misconfiguration.
Whether these misconfigurations were a result of oversight
(e.g., default setup) or changed dynamically later on by an
attacker is not known—this is because configuration changes
are not typically audited and thus often go unnoticed. More
recently, in July 2019, a configuration-based vulnerability in
Capital One’s firewall allowed hackers to access the credit
card information of more than 100 million customers [7]. The
breach cost the company a projected sum of 100 to 150 million
dollars. As is evident, there is a growing need to systematically
track and audit configuration changes in the face of such
devastating attacks.

Provenance tracking is known to be effective in analyzing
malicious system modifications. A variety of provenance-
tracking techniques have been proposed in the literature [42],
[62], [66], [72], [77], [63], [52]. These techniques use audit
logging to record important events during system execution
and then derive causal relationships between events during
the analysis phase. Under the hood, these techniques leverage
frameworks, such as Linux Audit [39] or Windows Event
Tracing [16], which are based on system call interception to
monitor accesses between system subjects (e.g., processes) and
objects (e.g., files, sockets, pipes, etc.). The audit logs are
then parsed into a causal graph for improved analysis and
readability. If an Indicator of Compromise (IoC) is observed,
a security analyst can use provenance graphs for root cause
analysis to understand the chain of events that led to the
flagged event. Furthermore, security analysts can also find all
of the ramifications of the attack using the provenance graph.

Unfortunately, existing provenance-tracking techniques pri-
marily collect audit traces exclusively at the operating sys-
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tem (OS) level. Even though this focused approach allows
trackers to log a wide variety of low-level OS events, they
remain completely or partially oblivious to application se-
mantics, resulting in incomplete coverage. Such semantic
gaps undermine the forensic investigation of certain classes
of attacks where information from the application layer is
necessary to reconstruct the attack and correctly understand
the complete chain of events. To close the semantic gap,
a few provenance trackers [53], [71] attempt to integrate
application-level information by leveraging applications’ built-
in event logging features. However, when surveying the open-
source applications used to evaluate prior work [53], [71],
we are surprised to discover that very few leading open-
source software projects record configuration changes in log
messages, rendering existing techniques inapplicable when
investigating configuration-based attacks. Hence, in light of
the increasing prevalence of configuration-based attacks, we
advocate for a novel approach to enhance existing OS-level
provenance-tracking techniques by effectively tracking config-
uration changes and transparently integrating OS-level audit
traces with application-level information.

This paper presents Dossier, a system that audits con-
figuration changes in a target application and encodes the
necessary information into OS-level audit logs. Dossier sup-
ports the main interfaces of configuration changes: changing
configuration-related program variables in memory (typically
through the user/admin interfaces) and changing configuration
files on disk. To track memory-based configuration changes,
Dossier performs novel static analysis on the application to
identify configuration variables and then instruments part of
the application to track changes to those variables. For file-
based configuration changes, Dossier loads a custom kernel
module to track when a specific set of system calls (write,
pwrite, writev, pwritev, etc.) are used to modify an important
configuration file. We designed a novel file delta computation
algorithm that efficiently tracks changes to the configuration
files and removes redundant log entries to significantly reduce
space overhead. Finally, Dossier collects whole-system prove-
nance logs via Linux Audit based on a widely agreed-upon
set of rules for forensic analysis [50], [42]. Taken together,
Dossier generates holistic provenance graphs that can not only
reason about attacks that are captured by existing provenance
trackers [50], [42], but also configuration-based attacks.

We demonstrate the effectiveness of Dossier through real-
world case studies of configuration-based attacks and show
how the system can be used in a forensic investigation to
enable complete reconstruction of cyber attacks. We measure
the runtime overhead Dossier incurs using a combination of
microbenchmarks and representative workloads. Our results
show that Dossier has a negligible runtime overhead on average
(<7%) for moderate file-based configuration changes, whereas
it adds 7.96% maximum runtime overhead for memory-based
configuration changes over an insecure baseline that employs
application-oblivious system-call logging.

This paper makes the following main contributions:

• An analysis of configuration-based attacks in the real
world (Section II): We present the first characteristic study
of real-world configuration-based attacks to understand their
impact, spread, and permeation of these attacks. Our study

shows the importance of defending against configuration-
based attacks and highlights the motivation of tracking
configuration changes.

• Tracking file-based configuration changes (Section V):
We develop a light-weight kernel module that intercepts
write-related system calls associated with configuration files
and logs any changes of the file content over time. To
address scalability issues, we designed an algorithm that
computes file differences to determine which part of the
file is changed and incrementally store the deltas.

• Tracking memory-based configuration changes (Sec-
tion IV): We build a novel static analysis tool based on
the LLVM compiler infrastructure to locate and instrument
code snippets responsible for configuration updates in the
target application. During application execution, the instru-
mentation enables the underlying audit subsystem to observe
modification to configuration values.

• Realistic evaluation (Section VII): We evaluate the ef-
fectiveness of Dossier against 5 real-world application-
based attack scenarios. Dossier captures all important, rele-
vant configuration changes. To show the low overheads of
Dossier, we measure its performance under representative
workloads and benchmarks.

II. BACKGROUND & MOTIVATION

In this section, we first introduce several formal definitions
which are required to understand the Dossier system, and then
we provide a classification for configuration-based vulnerabil-
ities. Finally, we present an attack scenario to highlight the
limitations of existing work and motivate our work.

A. Definitions

Application configuration. We use the term configuration to
refer to the inputs of an application program that controls the
application program’s runtime behavior, including feature sets,
environments (e.g., data directory, key file, bind address, and
remote hosts), policies (e.g., permissions and access control),
resource allocation, etc. Therefore, configuration is critical,
sensitive information of any application.

Configurations can be set in application’s configuration
files or be set through the application interfaces (e.g., CLIs)
for users or sysadmins. Configuration files are typically loaded
by the application at the startup time to initialize the applica-
tion configuration state, while user/admin interfaces allow the
application configuration to be changed dynamically at appli-
cation runtime. Essentially, configuration values are loaded into
the corresponding program variables in the application and are
used during the program execution. We term those program
variables configuration variables. Typically, each configuration
variable has a default value defined in the application program.
The default value will be overwritten by the values specified
in the configuration file upon the application startup. Those
values will be further updated when users or sysadmins set the
configuration through application interface (e.g., CLIs) during
the application runtime.

Configuration-based vulnerabilities. We use the term
configuration-based vulnerabilities to refer to vulnerabilities
rooted in or triggered by the configuration settings of the target
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Fig. 1: The percentage of configuration-based vulnerabilities in the
CVE dataset from 1999 to 2019.

applications. From a high level perspective, the implementation
of security has two parts: the code and the configuration [60].
The code is the programs that security depends on, while the
configuration is all the data that controls the operations of these
programs. Even correctly-coded programs could be vulnerable
when misconfigured; while code is written once, configuration
is different for every installation.

By exploiting configuration-based vulnerabilities, attack-
ers can launch devastating and disruptive attacks, termed
configuration-based attacks. For example, in April 2019, a
misconfiguration in Inmediata Health Group’s website allowed
leakage of 1.5 million individuals’ data [18]. Even worse, the
voting profiles of 154 million US citizens were leaked from a
misconfigured instance of CouchDB running on Google Cloud
services in 2016, exposing data that could have been abused
for influencing elections and spreading targeted disinformation.
Unsettlingly, network logs from this incident confirm that
a suspicious IP address from Serbia had indeed accessed
the database in the months prior to the misconfiguration’s
discovery. Numerous other recently reported data leaks can
also be attributed to misconfigured servers, firewalls, and
databases affecting a large number of individuals [29], [14],
[21], [31], [23], [27], [2], [1], [82]. The potential impacts of
configuration-based attacks on organizations underscore the
importance of developing effective tools for their investigation.

Surprisingly, there is little analysis on configuration-based
vulnerabilities, despite the grim headlines and postmortems. To
mitigate that, we present our analysis of configuration-based
vulnerabilities collected from public vulnerability databases.
We first inspect the Common Vulnerabilities and Exposures
(CVE) vulnerability dataset, which is composed of vulnerabil-
ity records for the last 21 years [15]. We identified various
configuration-related vulnerabilities using relevant keywords
(e.g., config, configuration, etc.), then manually verified that
each of the returned entries were configuration-based. Once
we identified entries of interest, we calculated the percentage
of configuration-related vulnerabilities every year for each
category. The results are shown in Figure 1. On average,
configuration vulnerabilities constitute 4.09% of reports in the
past decade. The latter part of the trendline seems to indicate
an upward rise in the percentage of cases observed with 6.8%
(≈1500) configuration-based attacks in 2019 alone. Given
their potential severity, the prevalence of configuration-based
vulnerabilities warrants immediate and serious attention by the

security community to design a holistic auditing framework
that can reason about configuration-based attacks along with
other attacks.

B. Categorizing Configuration-based Vulnerabilities

To gain a better sense of how and why configuration-
based vulnerabilities occur, we conduct an additional survey
of the National Vulnerability Database (NVD) [19]. The NVD
is a public data source that maintains standardized information
about reported software vulnerabilities managed by National
Institute of Standards and Technology (NIST). Searching the
keyword config returns 4418 entries from 1992 to 2018.
Selecting the 100 most recent entries for investigation, we
find that 65 out of the 100 are truly related to configuration
issues, while the remaining 35 happened to have the keyword
“config” as a software name, class name, etc. Analyzing the
65 shortlisted entries, we arrive at the following four broad
categories for configuration-based vulnerabilities:

C1: The vulnerability is insecure default configuration. In
this category, the vulnerability comes from insecure configu-
rations which are set as the default values by the developers.
As a result, the deployment of the program will be vulnerable
if those default configurations are not changed. For example,
the default vhost configuration in Puppet before v3.6.2 does
not include the SSLCARevocationCheck directive, allowing re-
mote attackers to obtain sensitive information via a revoked
certificate when a Puppet master runs with Apache 2.4 [8].

C2: The vulnerability is exposed by legitimate configu-
ration changes. In this category, the vulnerabilities are not
in the configuration values but are caused by flaws in the
software code. The vulnerabilities are accidentally exposed by
legitimate configuration changes for various purposes, such as
feature release and behavior changes. This class of vulnera-
bilities can be temporarily mitigated by changing back to the
original configuration. However, for a more permanent and
robust solution, the underlying software flaws must be fixed
in a manner so that the program is secure for all possible
configurations. For example, the mod_http2 module in the
Apache HTTP server 2.4.17 through 2.4.23 does not restrict
request-header length when the protocol configuration in-
cludes h2 or h2c, both of which are correct configuration values
and legitimate options. However, in both these settings, the
Apache server allows remote attackers to cause a denial of
service (memory consumption) attack via crafted continuation
frames in an HTTP/2 request [11].

C3: The vulnerability allows unauthorized configuration
changes as a part of the attack vector. In this category, a
vulnerability allows unauthorized modification of configuration
parameters as part of the attack vector to compromise the target
application. For example, several previous versions of MySQL
allow local users to create arbitrary configurations and bypass
certain protection mechanisms by setting general_log_file to
a my.cnf configuration [9]. A detailed case study of this attack
is presented in Section VII-B1

C4: The vulnerability exists because configuration inputs
are not sanitized or properly parsed. In this category, a
vulnerability leads to software compromises due to processing
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TABLE I: The distribution of the 65 most recently reported
configuration-based vulnerabilities in the NVD database We deter-
mine that categories marked with ∗ can be effectively audited, and
are thus the focus of our work.

Category of vulnerabilities Distribution
C1 : Insecure default configuration 10 (14.9%)
C2∗: Exposed by legitimate configuration changes 21 (31.3%)
C3∗: Exploited via unauth. configuration changes 21 (31.3%)
C4∗: Exploited via malcrafted configuration inputs 16 (23.9%)

of malcrafted configuration inputs. In most cases, this hap-
pens because of incorrect parsing, translation or validation of
configuration inputs. For example, in Exponent CMS 2.x prior
to 2.3.7, a bug exists in /install/index.php’s handling of
configuration data (passed via the sc HTTP POST parameter)
that allows an unauthenticated remote attacker to permanently
inject arbitrary PHP code into /framework/conf/config.php

and execute it with the privileges of the web server [26]. This
attack is discussed in more detail in Section II-C.

Table I presents the distribution of these categories (C1–
C4). Each category is characterized by its relationship to the
software’s configuration subsystem. C1 does not involve dy-
namic modifications of the configuration of deployed software,
making auditing an indirect solution for defending against
them; these issues could be addressed more effectively through
static and dynamic software analysis and verification. In con-
trast, C2, C3, and C4 are all associated with discrete runtime
events that can be conceivably audited and are hence, within
the scope of this work (study and analysis of C1 is orthogonal
to our work). For C2-based vulnerabilities, our work does not
focus on pinpointing the root cause vulnerability inside the
code, instead, we audit the configuration changes that serve
as an indicator that the vulnerability was exploited. Together,
C2, C3, and C4 constitute over 85% of the surveyed NVD
vulnerabilities and make our analysis and findings applicable
to the common case of configuration-based attacks.

C. Motivating Attack Scenario

We now consider an attack scenario consisting of both
file-based and memory-based configuration changes, and then
discuss the limitations of existing causality analysis techniques
for investigating this intrusion. A provenance graph for the
described attack is visualized in Figure 2.

Scenario: A company uses Exponent CMS [17] (a content
management system) to manage its web content, allowing
multiple contributors to create, edit, and publish. It also
connects a Redis database to the content management system
at the backend. The company relies on Linux Audit to collect
system logs at the kernel level. Given the scale of the company,
the configuration files of the CMS are updated and modified
frequently. Unfortunately, an attacker discovers a critical file-
based configuration vulnerability (CVE-2016-7790 [10]) in
this version of Exponent CMS that allows them to inject
malicious code into the program’s configuration file [26]. The
vulnerability exists within the sample /install/index.php

script, which is not automatically deleted after the installation
of the web application. The script, when processing user-
input data passed via the “sc” HTTP POST parameter, allows

the attacker to permanently inject malicious PHP code into
/framework/conf/config.php with the following exploit:
<form
action="http ://[ host]/ install/index.php"
method="post" name="main">
<input type="hidden" name=’sc[","");

passthru($_GET[]’ value=’"]); // ’>
<input value="submit" id="btn" type="submit" />
</form>

After a successful PHP code injection attack, the attacker
can execute arbitrary system commands via the web shell to
gain control of the website, its databases, and the entire web
server. Next, the attacker escalates their privilege by exploiting
a vulnerability in the Redis database [25], which allows
dynamic updates of program variables that store configuration
values (stored in global struct instance named server with type
redisServer). The ability of dynamically modifying Redis
configuration values in memory enables the attacker to change
the Redis database location to the .ssh directory using the
CONFIG SET DIR command. After the attacker writes their own
SSH keys into the new database location using the CONFIG

SET DB command, they are able to remotely log in to the
Redis server using their SSH key, which leads to privilege
escalation. The incident is eventually detected and security
analysts initiate the investigation.

Limitations of System Logs. We first consider the case in
which the analyst makes exclusive use of the Linux Audit
logs, enabling causal analysis at the syscall level as shown
in past work, e.g., [42], [52], [59], [62], [63], [66], [72],
[77]. These techniques are fairly useful in that they offer a
broad view of the system activity. However, they suffer from
a notable semantic gap – the captured logs lack descriptions
of higher-level application behaviors that are often pivotal to
attack reconstruction. In this particular case, analysts are able
to discover the web shell that resulted from PHP code injection,
and also that the Redis database was compromised. However,
because the system logs do not specify the configuration
fields that were modified in the file-based attack, the intel-
ligence provided to the analysts is extremely coarse-grained.
Additionally, these configuration files are subject to frequent
legitimate updates, making it difficult to discern malicious
updates from authorized ones. Finally, to make matters worse,
in the dynamic memory-based attack on Redis, no events in
the log describe the malicious dynamic configuration change,
widening the semantic gap even further. In short, the system-
level logs paint an incomplete picture of attacks that leverage
configuration-based vulnerabilities.

Limitations of Application Event Logs. We now consider
the possibility that, in addition to standard logging, the security
team has deployed a framework that integrates syscall logs
with application-layer events, as done in OmegaLog [53], Her-
cule [71] or UIScope [87]. OmegaLog [53] and Hercule [71]
make use of applications’ existing event-logging statements
(e.g.,debug messages) to gain insight into higher-level run-
time semantics without any instrumentation. Unfortunately, we
surveyed the 18 applications used in [53] along with all the
applications used in our work and found that none creates
records of file-based or memory-based configuration change
events. As a result, neither OmegaLog nor Hercule are able
to merge the log streams together in such a way that sheds
light on the attack. As UIScope’s purpose is to associate user
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Fig. 2: The provenance graph of the motivating attack scenario
described in Section II-C. In this graph we use boxes to represent
processes, diamonds to represent sockets, oval nodes to represent
files. Additionally, squashed rectangles with dashed edges denote
configuration-specific threat intelligence that is exclusively provided
by the Dossier system.

interface events with system logs, it could only assist if the
configuration files were modified by a GUI, which is not
common for server applications. As a result, application event
analysis provides no added insight into the nature of this attack,
specifically for the memory-based Redis compromise, which
is still invisible to the analysts.

Limitations of Application Instrumentation. An alternate
approach to bridging the semantic gap is to instrument ap-
plications to make high-level semantics visible to the under-
lying system log [62], [66]. For example, BEEP [62] and
ProTracer [66] analyze and instrument programs to report the
beginning of individual autonomous execution units, mitigating
dependency explosion in long-lived programs. ProTracer [66]
uses BEEP [62] as the basis for its execution partitioning,
otherwise, it does not log any application-layer information.
Because BEEP is event loop-based, it is poorly positioned to
track file-based or memory-based changes to the application
state. Rather than focusing exclusively on tagging event-
handling loops, MPI [65] supports execution partitioning for
a broader range of applications (e.g., browser tabs) through
limited developer code annotations. However, MPI’s analy-
sis uses those annotations to instrument the high-level tasks
present in the application to achieve execution partitioning
and does not instrument or log any configuration updates
during application execution. In short, these techniques have
focused exclusively on resolving semantic gaps related to
execution units and are not suited to application state tracking
in particular configuration changes. While a broader range
of analysis tools have been proposed to aid in application
security [73], [46], their applicability to configuration auditing
is unclear.

III. DOSSIER OVERVIEW

A. Threat Model and Assumptions

Based on our study of configuration-based vulnerabilities
in Section II, this work, similar to previous work [42], [62],
[66], [72], [77], [63], [52] on forensic analysis, considers
an adversary attempting to exploit a software vulnerability,
take control of the host, and/or maintain access to the system
by malicious modification of software configurations. Beside
these standard capabilities of a remote attacker, we also,
focus on three capabilities permitted by configuration-based
vulnerabilities: 1) The attacker exploits a software vulnerability
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Fig. 3: Dossier architecture overview (Section III-C).

after it is exposed by a configuration change made by the sys-
tem administrators (C2). 2) The attacker bypasses or negates
preventative security mechanisms by exploiting a vulnerability
that allows them to modify software configurations and render
the defenses useless or less effective (C3). 3) The attacker
compromises software by providing malcrafted configuration
data to vulnerable input handlers (C4).

We do not consider abuse of insecure default configurations
(C1) in this work because such configuration vulnerabilities
do not involve dynamic modifications of the configuration of
an application (details in Section II). Additionally, we make
the following assumptions: 1) We assume that a system-level
causality tracker is running on the host. Like other work in
this space (e.g., [52], [49], [42], [68]), we assume that the
causality tracker is not compromised and that the audit logs are
correct at the time of analysis. Audit framework compromises
can be mitigated through system hardening [42] or detected
through tamper-evident logging techniques [57], [69], [70]. 2)
For detecting file-based configuration changes, we assume that
the sysadmins are able to locate the configuration files of the
application under analysis. This assumption is reasonable as
prior work [82] suggests that sysadmins frequently change
configuration files and are aware of the configuration file
paths. Moreover, sysadmins can use automated configuration
file mining tools [54] to identify the config files’ locations. 3)
For detecting memory-based configuration changes, we assume
that the sysadmins have access to the source code of the target
applications, which is required for the static LLVM analysis.

We do not consider hardware and kernel-level attacks or
backdoors in this paper. Furthermore, we assume only explicit
attacks, i.e., side or covert channel attacks are out of the scope
of this paper.

B. Problem Statement and Design Goals

Our survey of prior work leads us to the problem statement:
Existing provenance collection and analysis systems are unable
to encode static and dynamic configuration changes of tar-
get applications into the underlying whole-system provenance
graph, preventing the investigation of configuration-based at-
tacks in a causally-correct manner. Addressing this problem
is challenging for the following reasons:

• Configuration changes often happen dynamically (i.e., in
memory) and are thus not visible to system-level prove-
nances tracker that can only monitor writes to on-disk
application files. To log modifications in memory, we require
a generic means of tracking changes from inside of the
application’s internal state.

• Even when configuration changes cause disk operations, ex-
isting audit and provenance frameworks are still insufficient
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because the data buffer argument of the syscall is typically
not logged. Thus, while it may be possible to determine
that a file containing configuration was changed, the log
will not reveal the specific fields modified. To make matters
worse, due to the high frequency of write syscalls, it is
also common to avoid overheads by disabling their auditing
altogether.

• Even after logging the configuration changes on the system,
it is challenging to integrate this information with existing
auditing streams in a semantically- and causally-valid way.
In particular, it is unclear how to associate configuration
update events with system-layer audit records in a manner
that preserves the correctness of causal graphs.

With these challenges in mind, we set out to design a
system that provides: 1) precise identification of changes to
configuration state at the field-granularity; 2) correct associa-
tion of configuration changes to external system events, such as
attributing the change to a specific user or process; 3) support
for fine-grained detection of configuration changes regardless
of the update mechanism, be it file- or memory-based; 4)
highly efficient configuration auditing that avoids prohibitively
costly runtime or log storage overheads.

C. Our Approach

To achieve these goals, we present Dossier, a framework for
configuration auditing. An overview of the Dossier architecture
is shown in Figure 3. For file-based configuration tracking
(Section V), Dossier includes a kernel module that takes as
input a list of sensitive configuration files to monitor for con-
tent changes, which facilitates selective interception of write

and other relevant system calls. To allow for memory-based
configuration tracking (Section IV), the user first annotates
configuration variables in the program. Then, our LLVM-based
analysis uses the annotations to determine the placement of
instrumentation hooks to emit configuration change log events.
Finally (Section VI), Dossier combines the configuration logs
with the underlying system logs to create holistic provenance
graphs that link configuration events to system events in a
causally-correct manner, facilitating precise investigation of
configuration-based attacks. A provenance graph generated
by Dossier is shown in Figure 2; squashed rectangle ver-
tices provide evidence that would not have been available
using previous approaches. The integration of configuration-
related application telemetry with system logs allows holistic
provenance generation and enables forensic investigators to
bridge the semantic gap by effectively piecing different at-
tack fragments together. Prior research has also shown the
benefit of integrating system logs and application telemetry
(e.g., [53], [71], [87]), and even execution partitioning solu-
tions [65], [66] extract coarse-grained application telemetry
to improve investigations. While we motivate our approach
through configuration-based attacks, we note that Dossier
is a generic tool for auditing application state information
maintained in program variables. Dossier is among the first
attempts to capture application state change information and
consider them in provenance tracking. We hope that this work
will spur further research into application state auditing.

IV. TRACKING MEMORY-BASED CONFIG CHANGES

As discussed in Section II-C, certain applications such
as Redis, NGINX Unit1, and Bind [5] dynamically update
configuration values at the memory locations during runtime
without invoking any system calls. Thus, to track memory-
based configuration changes, Dossier needs to log the target
value whenever it is updated in the memory locations. To
track such configuration changes, we designed an automated
toolchain that first statically analyzes the target application
to identify and mark instructions that update configuration
variables—program variables that store configuration values—
in the entire application. After that our toolchain instruments
the application at those marked locations with the logging
statements to disclose configuration changes to the underlying
audit subsystem.

Upon a dyanmic update, our logging statements record the
changed configuration values along with other important meta-
information (e.g., timestamps and PID) required for prove-
nance graph integration. We build the instrumentation using
the LLVM compiler [61] in which our instrumentation is a
transformation pass on LLVM bitcode of the target application.
We generate target application bitcode through WLLVM [38].
WLLVM provides tools for building whole-program (or whole-
library) LLVM bitcode files from an unmodified C/C++ source
package. Our toolchain consists of three phases, which we
describe in the next few subsections.

A. Annotating Application Configuration Variables

During the first phase, Dossier requires the sysadmins
to annotate configuration variables that store configuration
values. Optionally, Dossier also allows the sysadmins to
specify variable types as annotations. Dossier takes those
types as inputs and annotates all the variables that match the
specified types. Following prior studies [85], [83], [78], [44]
on configuration analysis, we assume that mature software
projects use unified data structures or APIs for managing
configurations. Such APIs make it easier for end-users to
locate and annotate all the configuration variables present in
the project. We confirmed this observation in our work by
analyzing Redis, Bind9, and NGINX Unit. It took 2–8 lines to
annotate those three applications. A large-scale analysis can be
found in [85], [78] for C/C++ and Java programs, respectively.
Overall, it takes on average seven lines of annotation across
the projects in prior studies. Our numbers are consistent with
those. Similarly, locating configuration-related structures/APIs
is also straightforward. It took one of our authors around 20
minutes to identify the data structures in the Redis code. Note
that this annotation is a one-time effort.

Fully automatic solution for identifying configuration vari-
ables is an area of research [48], [90]. We note that those
studies are orthogonal to our work. We will incorporate the
proposed automated approaches as our future work.

B. Static Analysis

Using sysadmins provided annotations, Dossier identifies
all the locations in the application where the configuration vari-
ables are defined or updated. For such identification, Dossier

1NGINX Unit is a recent version of NGINX webserver that introduced
dynamic updates and many other new features.
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locates all the STORE instructions in the bitcode and gets all the
possible locations in the program where variables are updated.
Next we find out if those STORE instructions update annotated
configuration variables, so that we can mark those instructions
for instrumentation in the final phase of our toolchain. To
figure out that, we extract destination operands from those
STORE instructions. We have three different types of destination
operands in the STORE instructions and we handle each one
differently, as described below.

1. Variable Destination Operand: When the destination of
the STORE instruction is a variable, it is fairly straightforward
to figure out if that destination belongs to an annotated con-
figuration variable by simply comparing the name (Lines 6–7
in Algorithm 1). The following bitcode snippet, is an example
of such an instruction,

1 store i32 90, i32* @port , align 4, !tbaa !1

In this example, the port variable is annotated as a configura-
tion variable; Dossier identifies the destination operand of the
STORE instruction to be port. Therefore, it marks this STORE

instruction for further instrumentation in the final phase.

2. GetElementPtr Instruction Destination Operand: GEP
instructions are pointers to the memory locations of certain
variables [28]. When the STORE instruction destination is a
GEP instruction, Dossier queries the Program Assignment
Graph (PAG) of the target application to figure out if those
destinations belong to annotated configuration variables. PAG
is a graph representation of LLVM bitcode where each value
and instruction in the bitcode is mapped into a PAGNode
or PAGEdge. These PAGEdges represent constraints between
pointers. We use SVF tool [37], [76] to generate PAG from
the LLVM bitcode. A GEP instruction is represented as a GEP
edge in the PAG, where it flows from a source to a destination
(the source is the memory location that it points to). Dossier
generates a PAGNode using the destination value of the STORE

instruction (Line 5 – Line 4 in Algorithm 1). If the destination
value is a GEP instruction, a GEP edge will flow into the
PAGNode (Line 10 in Algorithm 1). Next, Dossier checks
if the source of the GEP edge is an annotated configuration
variable. If so, the STORE instruction updates the value of
a configuration variable and should be marked for further
instrumentation in the next phase (Line 18 in Algorithm 1).
Since the PAG is field-sensitive, it also includes the offset of
the GEP instruction, which helps mark and identify specific
offsets of the configuration variables.

Additionally, Dossier uses the offset value recorded in the
GEP edge to calculate the precise location of the configura-
tion variable (Lines 14–16 in Algorithm 1) to achieve field
sensitivity. For example, consider the following source code:

1 struct server { int port; };
2 struct server config;
3 config.port = 90;

The above code snippet leads to the following bitcode:
1 store i32 90, i32* getelementptr inbounds
2 (% struct.server ,% struct.server* @conf ,i64 0,i32 0),
3 align 4, !tbaa !1

The annotated configuration variable is conf with the struct

type server. When the port offset of conf is updated, it is

done via GEP instruction in bitcode. The STORE instruction
above, uses the GEP instruction to directly update the offset
port of config. Our approach marks such a case using the
PAGNode of the GEP destination operand and its GEP edge
in the PAG for further instrumentation in the final phase of
our toolchain to log configuration changes.

3. Pointer Alias Destination Operand: Different variables
could be stored at the address of the configuration variable,
which is later dereferenced to use the value that it points to.
To handle these cases, we leverage Andersen Pointer Analy-
sis [40] from SVF. Andersen’s pointer analysis is a context-
insensitive, inter-procedural analysis for obtaining pointers to
variables. We used the MemorySSA (Static Single Assignment
form of a program’s variables) generated by the Andersen
Pointer Analysis, which allows us to reason about the in-
teractions between various memory operations and find all
PAGNodes in the PAG that are aliases to another variable.
The discovered PAGNodes in this step, subsequently allow
us to find the aliases to annotated configuration variables.
Dossier marks those instructions which update these pointer
aliases by checking if the destination value is an alias of
configuration variables (Lines 8–9 in Algorithm 1). This pro-
vides completeness as Dossier marks and identifies all STORE

instruction with the destination as the pointer to the address
of configuration variables as well as values from configuration
variables. Consider the example:

1 int * conn_ptr = &curr_conn;
2 (* conn_ptr)++;

The corresponding bitcode uses pointer alias as destination
operand in STORE instruction:

1 %1 = load i32 , i32* @curr_conn , align 4, !tbaa !1
2 %2 = add nsw i32 %1, 1
3 store i32 %2, i32* @curr_conn , align 4, !tbaa !1

conn_ptr points to an annotated configuration variable
curr_conn (Line 1) and updates it’s value on the next line.
Within the bitcode the address of curr_conn will be loaded
into a register (Line 1) and the update to the pointed address
is performed through the STORE instruction (Line 3). Pointer
aliasing will cater to such a case and mark the STORE instruction
which indirectly updates the annotated configuration variable
for further instrumentation in the next phase.

C. Logging Instrumentation

Dossier inserts a logging statement after each Dossier-
marked STORE instruction from the static analysis phase. The
logging statement records the value of the changed configu-
ration. Dossier includes utility functions for type casting and
uses Linux auditd logging function audit_log_user_message.
This function uses the running audit daemon, which avoids
additional overhead and writes configuration change logs along
with the whole-system logs.

Function Specialization Dossier’s instrumentation is pre-
equipped with an optional function specification optimiza-
tion to minimize runtime overhead of tracking configuration
changes, while maintaining precision. This is based on the
observation that mature systems such as NGINX Unit, Re-
dis and Bind all maintain dedicated functions for handling
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Algorithm 1: Mark STORE instructions
Global Variables:
AnderPTA: Anderson Pointer Analysis
PAG: PAG obtained from AnderPTA
Input :
allStoreInst: Set of all STORE instructions in the program
configVars: Known configuration variables
offset: Offset of the structure of configVars that points to the field
Output:
S: Set of STORE instructions that update the target configuration variables

1 Function FilterStores():
2 S ← ∅;
3 foreach STORE instruction i ∈ allStoreInst do
4 dest ← i.getpointerOparand(); ;
5 PAGNode ← PAG.getPAGNode(dest); ;
6 if dest ∈ configVars then
7 S.insert(i);
8 else if AnderPTA.isAlias(dest,configVars)==MAY_ALIAS

then
9 S.insert(i);

10 else if PAGNode has an incoming normalGEPEdge then
11 foreach edge ∈ PAGNode.incomingEdges() do
12 if edge == normalGEPEdge then
13 if edge.source ∈ configVars then
14 if offSet is specified then
15 if edge.getOffset() == offset

then
16 S.insert(i);
17 else
18 S.insert(i);

19 return S;

dynamic updates. Given a user-provided function, this spe-
cialization pass only considers STORE instructions that are
part of provided function or any function in the call tree
of the provided function. The approach minimizes overhead
by reducing the number of identified STORE instructions as
configuration updates. For instance, function specialization
for nxt_router_conf_create function in NGINX Unit server
reduces the identified configuration update STORE instructions
(with pointer aliasing) from 3054 to 90, which decreases the
performance overhead significantly.

D. Putting It All Together

We demonstrate our static analysis technique using two
open-source applications, Redis and NGNIX Unit, that provide
interfaces for updating configuration dynamically. We discuss
another application in Appendix A. We select these applica-
tions for their relevance, popularity, and wide-scale usage.

Redis: Redis [24] is an in-memory data store. The config-
uration values for Redis are stored in a global struct instance
named server with type redisServer. Redis allows dynamic
updates of these configuration values at runtime, as discussed
in Section II-C. For example, configuration commands CONFIG

SET DIR and CONFIG SET DB, respectively update the directory
and DB name dynamically. In the underlying code, these
commands update the values of variables rdb_filename and
rdb_save_time_start, present in the struct server at offsets
168 and 174 respectively. To evaluate Dossier, we annotated
the global variable server and the struct offsets, 168 and
174. We then ran our static analysis. Our static analysis
results for Redis are discussed in Table V. We were able
to successfully mark the relevant STORE instructions. We also
simulated the Redis attack explained in Section II-C and suc-
cessfully logged the configuration updates on the target vari-
ables (annotation provided by the sysadmins), rdb_filename

and rdb_save_time_start in the server struct.

TABLE II: The arguments extracted from different intercepted
system calls, writing to the target configuration files.

System
Call

Arguments
Extracted

Description

write buffer The contents of the buffer are extracted from the system
call arguments.

pwrite buffer &
offset

The contents of the buffer as well as the offset is
extracted from the system call arguments

writev iovec vec The iov array present in the system call arguments is
iterated in order and buffer from each entry is extracted.

pwritev iovec
vector &
offset

The buffer in each iovec entry is extracted in order along
with the offset present in the system call arguments.

sendfile src_fd &
offset

The contents of source file are extracted given the file
descriptor and the starting offset from the system call
arguments.

NGINX Unit: NGINX Unit [20] also allows dynamic
configuration changes; however, NGINX Unit configuration
change handling methodology is much more complex than
Redis. Each new request to NGINX Unit is assigned a con-
figuration object. Upon a configuration change, the NGINX
Unit uses a new configuration object for all the subsequent
requests. Due to this added complexity, Dossier uses the
structure type nxt_socket_conf_t instead of variable names
to annotate configuration variables. Once the annotations
are provided, Dossier uses static analysis to mark and in-
strument configuration variables. To filter redundant instruc-
tions, Dossier applied function specialization for the function
nxt_router_conf_create. The results of our static analysis
under different configurations for NGINX Unit are discussed
in Table V.

V. TRACKING FILE-BASED CONFIG CHANGES

One way to update the application’s configuration is to
change the configuration files on the disk. To keep track of
such changes, we need to record all the content written to each
configuration file. To this end, we propose a light-weight Linux
kernel module (LKM) that keeps track of content changes
to configuration files. Our LKM intercepts all the file-related
syscalls capable of updating configuration files on disk.2

Our workflow of capturing file-based configuration changes
is as follows: 1) Our LKM takes a list of paths to the
configuration files as an input. 2) Our LKM hooks the follow-
ing syscalls: write, pwrite, writev, pwritev, and sendfile.
3) Every time one of those syscalls is invoked, our LKM
checks the file handler argument to see if it is writing to
a configuration file (from step 1). If yes, it proceeds to the
next step for logging. Otherwise, it returns control to the
syscall handler. 4) Our LKM then extracts the contents of the
file update using the syscall arguments. Table II shows what
types of syscalls we intercept and how we extract content
from the arguments of those system calls. Our LKM also
extracts relevant process information (PIDs, PPID, etc.) from
the current task_struct, which is later used to stitch the config
logs to the system audit logs at the causally-correct places,
facilitating attack investigations. 6) Finally, our LKM writes

2We intercept a range of different write-related calls because certain
programs make use of these to update configuration files. For example,
SQLite3 has an option to replace seek+write with pwrite as it reduces the
overhead by replacing two syscalls with one. Similarly, writev, pwritev,
and sendfile have their own advantages over write in certain cases.
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Fig. 4: Visualisation of port value update in config file and corre-
sponding write syscalls in Exponent CMS

this information to audit logs, using Linux Audit API function
call audit_log().

For brevity, in this section, we will only discuss how we
handle write syscall since we handle other syscalls in a similar
way. Note that in Section VII, we evaluate and benchmark
Dossier, enabling all the five syscall hooks in our LKM.

A. Computation of File Deltas

During our experiments, we were able to log configuration
value changes using write syscall interception. However, we
found out that some applications update the entire configura-
tion file even if they are changing a small part of the file.
The entire file is rewritten in fixed-size chunks during the
update and the size of these fixed chunks varies for different
applications, typically ranging from 1kB to 16kB. Due to this
problem, our initial approach of intercepting write syscall
and extracting buffer will wrongly assert that the entire file
was changed even though only part of file was updated,
leading to incorrect results during forensic analysis. Further,
this approach incurs unnecessary space overhead by storing
the entire file’s contents rather than just the changed field.

To elaborate on this problem, consider a scenario shown
in Figure 4, where the port value was changed two times in
the configuration file of Exponent CMS [17]. We call the first
configuration update A and the second update B. The initial size
of the file is approximately 5.74kB and this file is rewritten in
chunks of 1kB during update. In the figure, the first argument
of the write syscall denotes the buffer size, and the second
argument denotes the starting offset. During update A, the port
is changed from "62" to "25" and the application rewrites the
entire file using a set of 6 write syscalls (1A – 6A). Each syscall
overwrites a specific chunk within the file. Since the new port
value uses the same number of characters as in the previous
port value, the size of the file remains the same, with the actual
port update occurring in 4A. Note that all write syscalls for
update A overwrote the old data with the same contents except
write number 4A.

During the update B, the port value was changed from "25"

to "1505" using a set of 6 write syscalls (1B – 6B). In this
update, since we added two new characters in the port value,
the final file size was increased by 2 Bytes – all the write

syscalls rewrite the previous data until the 4B syscall. The 4B

syscall updates the port value to 1505. Due to an addition of
2 bytes, a ripple effect takes places and 2 Bytes from the end

Algorithm 2: Compute deltas
Input :
rawLogs: Linux auditd logs
initFile: Initial file snapshot before any file updates
clusterInterval: Interval of audit_timestamp to cluster logs entries
Output:
outputLogs: Final logs with entries containing file deltas

1 Function ComputeDeltas():
2 List dataLogs ← rawLogs Audit log entries logged by Dossier ;
3 Set alreadyClustered ← ∅;
4 List clusters ← [] ;
5 foreach l1 ∈ dataLogs do
6 if l1 ∈ alreadyClustered then
7 continue; // Ignore l1, as it is already clustered
8 List curCluster ← [];
9 curCluster.append(l1);

10 foreach l2 ∈ dataLogs ∧ l2 6 ∈ alreadyClustered do
11 if timestamp(l2)-timestamp(l1) == clusterInterval

then
12 curCluster.append(l2);
13 alreadyClustered.append(l2);
14 clusters.append(curCluster) ;
15 sort(clusters); // Sort cluster entries based on audit timestamps;
16 List newEntries ← [];
17 foreach c ∈ clusters do
18 // Take clusters and get new log entry for each cluster;
19 newEntry,newFile ← getNewLogEntry(initFile, c);
20 newEntries.append(newEntry) ;
21 initFile ← newFile ;
22 List otherLogs ← rawLogs // Log entries not collected by Dossier ;
23 List outputLogs ← otherLogs+newEntries ;
24 return outputLogs;

of the 4th chunk move to the start of the 5th chunk. Similarly,
2 bytes from the end of the 5th chunk move to the start of
the 6th chunk as shown in Figure 4. Hence, the 5B and the 6B

syscalls do not rewrite the same data anymore.

We observed two things in this example: 1) We can not
compute the correct file delta by comparing the buffer of two
write syscalls writing on the same file offsets. For instance,
if we compare 5A with 5B because they write to the same file
offsets, we will reach the incorrect conclusion that 2 bytes were
added to the front of the data and 2 bytes were removed from
the end following the 5B update. In reality, neither conclusion
is true. 2) We also can not compute the correct file delta
by comparing the complete file state between two subsequent
write syscalls. Returning to update B, if we compute the file
delta between the 4B and the 5B syscalls, we will again reach
the incorrect conclusion that 2 new bytes were added and two
new bytes were removed from the 5th chunk of the file. Both
of these problems arise due to the ripple effect. From the
examples above, we can see that we only need to compare the
first and the last state of the complete file during an update
to compute the correct file delta. Based on this observation,
we developed an algorithm that clusters syscalls together to
compute accurate file deltas and remove unnecessary logs.

Algorithm. We assume an initial snapshot of the configura-
tion files before loading our LKM. Once our LKM is loaded,
it extracts the file offset along with the buffer for each write

syscall on the target configuration files, and stores it as a write
syscall entry in the audit logs. We make use of both the audit
logs and the initial configuration files to compute the file deltas.
Our file delta approach is outlined in Algorithms 2 and 3.

First, we parse the audit logs in an offline fashion and
find all the write syscall entries logged by Dossier for a given
configuration file (Algorithm 2, Line 2). Next, we cluster
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Algorithm 3: Get a new log entry from a log cluster
Input :
cluster: List of clustered audit log entries
initFile: Initial file snapshot before any cluster update
Output:
outputEntry: Final log entry with the correct file delta
newFile: New file version created after writes from cluster

1 Function GetNewLogEntry():
2 newFile ← initFile;
3 foreach c ∈ cluster do
4 offset ← c; // ”offset” field value ;
5 buffer ← c; // ”buffer” field value ;
6 // Update newFile by inserting buffer at specific offset and

overwriting previous data;
7 newFile ←

newFile[:offset]+buffer+newFile[len(buf)+offset:] ;
8 // Compute delta between newFile and initFile and store in newBuf;
9 newBuf ← delta(initFile, newFile) ;

10 // Create new log entry with newBuf for the buffer field ;
11 outputEntry ← cluster[0] with buffer=newBuf;
12 return (outputEntry, newFile);

all the syscall entries for a single file update together. We
observed that all the consecutive write syscalls for a single
file update exhibit similar timestamps, so we cluster the all the
syscall entries with timestamps that fall within a time period
(Algorithm 2, Lines 4– 14). This time period is a configuration
parameter in our system and defined as the ClusterInterval.
In our implementation, we use 0 for ClusterInterval value
because in our experiments all the consecutive write syscalls
for a single update exhibited the same audit timestamp.

Once we have reduced the syscall entries to a list of
clusters, we sort all the clusters (Algorithm 2, Line 15) and
process them according to the Algorithm 3. Given a cluster,
we generate the corresponding new log entry containing only
the file delta. For this purpose, we service all write syscalls
present within the cluster, in order, on the initial snapshot of
the configuration file (Algorithm 3, Lines 3– 7). This provides
us with a new file containing all the writes for a given file
update. The simulation of write syscalls is possible as each
syscall entry contains both the buffer and the offset. We then
use python’s difflib library to compute the delta between the
initial file and the newly updated file (Algorithm 3, Line 9).
Finally, this delta is used to create a new syscall entry with
buffer equal to computed delta and timestamp equal to the
first cluster entry. The new configuration file of the processed
cluster servers as an initial file for the next cluster and so on
until all the clusters are processed (Algorithm 2, Line 21). In
this way, we effectively reduced all the write syscall entries
into a handful of new syscall entries containing the exact file
deltas. Lastlt, we remove the previously logged syscall entries
from the audit logs and replace them with the new syscall
entries (Algorithm 2, Lines 22– 23).

The computation overhead of our technique is not a con-
cern because the deltas computation is an offline process. A
sysadmin can compute the file deltas using our technique on
demand (e.g., before conducting an investigation) or periodi-
cally to reduce storage overhead of the logs. The algorithm’s
runtime complexity is O(N), which is acceptable for offline
use cases.

Example. To better understand the Algorithm 3, consider an
example where we perform two updates at separate intervals on
a 32kB file. During each update, the file is rewritten in chunks
of 4kB using 8 write syscalls. This results in a total of 16 write

syscalls. During the offline parsing of logs, we will generate
2 clusters of 8 syscalls each based on the audit timestamps.
For each cluster, we perform all the 8 write syscalls on the
initial file version. We then compute the differences between
the initial and the updated file version of each cluster. As
a result, we effectively replaced the initial 16 write syscalls
with 2 syscalls containing the exact file deltas. These 2 entries
will contain the exact changes in file content after an update
without any repititions. Therefore, computation of accurate
deltas significantly reduces the space overhead of our logging.
Here, the reduction of storage overhead is an added benefit but
not the goal of our file-delta computation algorithm.

VI. RUNTIME AND INVESTIGATION PHASES

A deployment of Dossier includes both the kernel module
for tracking file-based configuration changes (Section V) and
application instrumentation for tracking memory-based config-
uration changes (Section IV). The kernel module is deployed
once in the OS and works for all the target applications running
on the OS. The instrumentation needs to be applied to every
target application. At runtime, Dossier logs both file- and
memory-based configuration changes along with the whole-
system provenance logs.

During the investigation phase, the analyst can use Dossier
to generate holistic provenance graphs given an Indicator
of Compromise (IoC). This holistic graph is generated by
parsing logs that contains both whole-system provenance and
configuration change logs collected by Dossier. We modified
SPADE’s provenance graph generation system [50] to generate
holistic provenance graphs. SPADE can parse whole-system
provenance logs generated by Linux Auditd into provenance
graphs. We added capability in the SPADE system to also
handle configuration change logs. As described in Section V
and Section IV, Dossier also collects meta-information, such
PID and timestamp and appends this meta-information to con-
figuration change logs during runtime. Such meta-information
allows us to figure out which process vertex is responsible for
changing the configuration values. Thus, during holistic prove-
nance graph generation, Dossier uses this meta-information to
determine the candidate process vertex to attach the configu-
ration change vertex.

VII. EVALUATION

In this section, we focus on evaluating Dossier’s per-
formance and efficacy as a specialized provenance tracker.
In particular, we first investigated the runtime overhead of
Dossier’s LKM. Second, we evaluated the runtime overhead of
the application instrumentation introduced by Dossier. Finally,
we measured the effectiveness of Dossier in reasoning about
real-world configuration-based attacks. We collected whole-
system provenance logs using the Linux Auditd framework.
All experiments were performed on an Ubuntu 18.04 LTS VM
with 32Gb memory and eight CPU cores.

A. Runtime Overhead of Dossier

The overall runtime overhead of Dossier comprises of
delays from two components: 1) overhead due to our LKM
to track file-based configuration changes and 2) overhead due
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to application instrumentation to track memory-based config-
uration changes. From the design of the system, it is evident
that the file-based overhead is a function of two parameters:
the overhead incurred due to the hooking mechanism to trap
all write system calls (irrespective of the file type) and the
additional overhead caused by the processing required to
service a few system calls specific to configuration files (we
call these “configuration file writes”). To quantify the former,
we use custom workloads and stress tests that allow us to
measure the overhead with various frequencies of file writes
with and without our LKM. To measure the overhead of the
latter, we again used our custom workload along with three
popular microbenchmarks from various domains. Similarly,
the memory-based overhead is a function of another two
parameters: the overhead caused due to pointer aliasing and
the degree of function specialization.

1) Overhead of file-based tracking: To evaluate the impact
of Dossier’s hooking mechanism, we implemented a cus-
tomized stress test that initiates write syscalls on different files.
We measured the time overhead with and without using our
LKM. We also varied the number of write syscalls (100K–
900K) to account for different workloads. For each run, we
initiate write syscalls and then we take the average to calculate
overhead per syscall. A comparison between the blue and the
green lines in Figure 5 shows the hooking overhead results for
this experiment. Our performance overhead for syscall hooking
mechanism is approximately 6-10 ns/op (an approximate 3%
increase). The main takeaway from the stress test is that the
overhead of the hooking mechanism stays under 5% under
stress and is acceptable.

We also measured the overhead of making write syscalls
specifically on configuration files (on which Dossier performs
some extra processing). We repeated the customized stress
testing, but this time we made 1000 write syscalls to configu-
ration files. Those 1000 write syscalls went through the extra
processing and were eventually recorded in the Linux audit
logs. We evaluated against 1000 write syscall to configuration
files because previous study [82] has shown that 99.3% of con-
figuration file updates of popular applications happen less than
1000 times over their lifetime. Thus, for each run, we initiated
1000 write syscalls to configuration files and varied the number
of write syscalls to non-configuration files. After that we take
the average to calculate overhead per syscall. Again, we also
varied the number of write syscalls (100K–900K) to account
for different workloads. A comparison between the red and
blue lines in Figure 5 shows the configuration writes overhead
results for our experiment. We noticed that increasing the
percentage of configuration writes also increases the runtime
overhead with the maximum overhead of 7% for 100K syscalls
(10% configuration writes). Note that for most workloads,
the majority of write syscalls are for non-configuration files.
Hence, for an application with 500K+ writes, Dossier incurred
a maximum configuration write percentage overhead of 4% for
the common case. For 900K writes, this percentage overhead
was further reduced to 1%.

To further evaluate the overhead, we used the LMBench
microbenchmark [34]. We ran LMBench five times without
loading our LKM. We took an average of the five runs to
get a baseline to compare our overhead against. We then
loaded Dossier’s LKM and enabled all the hooks pertaining
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Fig. 5: Runtime overhead of Dossier’s file-based configuration track-
ing approach under different scenarios.

TABLE III: LMBench measurements for Dossier. All times are in
microseconds. Percent overheads are shown in parenthesis.

Test Type Vanilla Dossier
File and memory latencies in µ seconds (smaller is better)
File create (0k) 878.56 885.82 (1%)
File delete (0k) 655.72 652.56 (-0.5%)
File create (10k) 904.3 950.46 (5%)
File delete (10k) 641.82 648.76 (1%)
mmap latency 6101.8 6179.2(1%)

to write syscalls, including write, pwrite, writev, pwritev,
and sendfile, and then ran LMBench five times. We also ran
1000 configuration file writes while kernel was loaded with all
hooks enabled. The results of the two experiments are shown in
Table III, which summarizes the low overhead of the hooking
mechanism. The only noticeable overhead (≈ 5%) observed
was that, on average, the 10K create time increased from
904.3 microseconds to 950.46 microseconds.

We also measured the overhead using the Postmark bench-
mark [58] and the BLAST benchmark [6]. For both these
benchmarks, each test was repeated 10 times to ensure con-
sistency and minimize the effects of background noise. The
Postmark test simulates the workload of an email server. It was
configured to run 30,000 transactions with file sizes ranging
from 1KB to 2MB in 10 sub-directories, with up to 3,000
simultaneous transactions. Similar to LMBench, we ran 1000
configuration file writes while kernel was loaded with all hooks
enabled. The overhead incurred by Dossier for the Postmark
test is shown in Table IV and only amounts to around 2%.
Furthermore, to estimate Dossier’s performance for scientific
applications, we ran the BLAST benchmarks. The BLAST
benchmark simulates typical biological sequencing workloads.
As shown in Table IV, BLAST benchmarks impose almost no
additional overhead implying that Dossier has little to no effect
on computation-intensive jobs.

2) Overhead of memory-based tracking.: We now measure
the runtime overhead of tracking memory-based configuration
changes. As mentioned above, the overhead of the application
instrumentation is determined by two parameters: 1) pointer
aliasing – covers more STORE instructions due to alias capturing
and 2) the degree of specialization – optimizes the performance
of the instrumentation. We tested the overhead of application
instrumentation using Redis and NGINX Unit server under
previously mentioned parameters as shown in Table V. For
Redis, we used Redis’s official benchmark to measure the
runtime overhead. The percentage overhead was calculated
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TABLE IV: Postmark and BLAST benchmarking results for Dossier.

Test Vanilla (s) Dossier (s) Overhead
Postmark 70.6 72.2 2.27%
Blast 236.21 235.49 -0.3%

based on the time taken to complete 100K query requests for
the SET method. For annotation, we specified the global struct
variable server along with the offsets (168, 174) to be tainted.
We then ran the taint analysis with different configurations—
with and without offset specification. Table V shows the
results of our overhead experiments. In most cases, the runtime
overhead is under 2%. The maximum runtime overhead is
7.96% in our experiments.

Similarly, we measured the runtime overhead for the NG-
INX Unit server using ApacheBench [3]. We initiated a total
of 1 million HTTP requests with 100 concurrent requests at
a given time. The percentage overhead was calculated based
on the time taken in milliseconds per request. For annotation,
we specified the type of structure as nxt_socket_conf_t, that
is, we annotate all the variables with the specified type. We
then ran static analysis under different configurations. Table V
shows our results for NGINX Unit experiments. We can see
that the percentage overhead is minimal with a maximum
overhead increase of 2.22%.

We also logged the number of lines instrumented against
each configuration in Table V. After a comprehensive manual
review, we were able to identify the correct number of STORES
that should have been instrumented by Dossier. This allowed
us to calculate the true positives, false negatives, and false
positives of the automatic instrumentation process. Based on
this information, we calculated the precision and recall of
main-memory based approach of Dossier against different
configurations. However, for one configuration of Redis and
NGINX Unit each, shown in row 5 and 6 of Table V, we were
unable to manually identify the false negatives and recall, due
to the large scale of the programs (16.9K and 4.25K STORES

respectively). The true positives, false positives and precision
were calculated for these case as we just had to manually
evaluate instrumented STORE instructions.

Our results show that offset specification significantly
reduces the marked STORES and the percentage overhead.
We observe this behavior in the case of Redis as shown in
Table V. We also found that recall is slightly impacted without
aliasing because of missing alias updates, but we gain high
precision because there are no false positives. On the other
hand, with aliasing enabled, recall significantly improves, but
precision is compromised because some alias instructions are
incorrectly instrumented. These results highlight the inherent
limitations of underlying static pointer analysis tools. Even
with state-of-the-art static analysis tools utilized by Dossier
(i.e., SVF [37], [76]), the correctness of the analysis is
impacted due to the imprecision during the pointer analysis
phase. Dossier aims to cater to this problem by providing
sysadmins with optimizations, such as function specialization
and offset specification, to reduce the number of false positives
with aliasing enabled. Moreover, sysadmins have the option to
disable pointer aliasing altogether at the cost of completeness
and still get reasonable recall values with high precision as
shown in Table V.

B. Effectiveness on Attack Forensics

We present three case studies to show the effectiveness of
Dossier in forensics for real-world configuration-based attacks.
We present another case study in Appendix B.

1) MySQL Attack: For this case study, we chose CVE-
2016-6662 [9] vulnerability. This vulnerability allows attackers
to remotely inject malicious settings into MySQL configuration
files (my.cnf), leading to serious consequences. In particular,
upon server restart, some parts of the my.cnf configuration
file are loaded with root privileges (such as the mysqld safe
wrapper script, which is executed as root) and an attacker can
modify these values and parameters to point to their malicious
code or allow them to preload a malicious shared library
through the --malloc-lib parameter (which could have a TCP-
based reverse shell payload). In such a scenario, successful
exploitation can escalate an adversary’s privileges giving them
access to a remote shell with root permissions.3

We now consider a scenario where a company uses vulner-
able version of MySQL server. All employees are allowed to
access certain sections of the database. The server collects OS-
level logs via Linux Audit. One night, an employee from this
company forgets to log themselves out of their computer, leav-
ing their device exposed. Capitalizing on this naive mistake,
an attacker uses the employee’s account to exploit the MySQL
vulnerability. They know that the installed MySQL server has a
vulnerability that allows them to modify the configuration file
and load the malicious code, which has a TCP reverse shell
that calls back to the attacker’s machine (the vulnerability even
allows the attacker to create their own configuration files as
well). The attacker makes the necessary changes by updating
the configuration file (my.cnf) such that when the MySQL
server restarts, the new configurations will be loaded, and the
call back function will be initiated. Now, the attacker waits
patiently for the restart to happen. In fact, they can even trigger
a manual reboot of the target server by launching a package or
system update process or by issuing a SHUTDOWN SQL statement
via the mysqladmin. Eventually, when the server restarts,
the malicious configurations are loaded, and the payload is
executed. As soon as the TCP call back is completed, the
attacker starts exfiltrating the data from the MySQL database.
Soon the admin detects the breach and terminates all the
outbound connections. Later, the Incident Response (IR) team
is asked to investigate this attack. The IR team immediately
digs into the audit logs to reconstruct of the attack. They
discover that there had been an “unauthorized” configuration
update in the configuration file. However, the issue the IR
team now faces is that they do not know which user or which
particular write operations to the configuration file had been
responsible for the attack. They may be able to filter out some
suspect write syscalls from the logs (which in itself will be
a daunting task); however, it will be difficult for them to find
the exact configuration parameter or value that was updated
(MySQL server has more than 500 configuration parameters),
what were the exact contents of the write operation and who
was responsible for the update (or which process did the
update).

3Furthermore, the vulnerability can be exploited even if security modules,
such as SELinux and AppArmor are installed on the target system with default
active policies for the MySQL service.
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TABLE V: Evaluation results of memory-based configuration tracking. We measure overhead and accuracy of our static analysis and
instrumentation under two parameters: 1) applying pointer aliasing and 2) applying function specialization (TP = True Positives, FP = False
Positives, FN = False Negatives).

Application Annotation set Pointer
Alias Specialization Total

STORES
Config
STORES

Overhead
(%)

Precision
(%)

Recall
(%)

TP, FP,
FNVariable Offset Type

Redis server 168, 174 redisServer No No

16966

4 0.18 100 67 4, 0, 2
Redis server 168, 174 redisServer No configSetCommand 3 0.17 100 75 3, 0, 1
Redis server 168, 174 redisServer Yes configSetCommand 7 0.21 58 100 4, 3, 0
Redis server Any redisServer No configSetCommand 68 1.24 100 87 68, 0, 10
Redis server Any redisServer No No 522 7.96 100 - 522, 0, -
NGINX Unit Any Any nxt socket conf t No No

4025
33 0.78 100 - 33, 0, -

NGINX Unit Any Any nxt socket conf t No nxt router conf create() 15 0.31 100 64 15, 0, 8
NGINX Unit Any Any nxt socket conf t Yes nxt router conf create() 90 2.22 27 96 24, 66, 1

MySQL

x.x.x.x
x.x.x.x

/etc/my.cnf

—malloc-lib=malicious.so

bash sudo 

/etc/passwd

scp x.x.x.x

Fig. 6: Holistic provenance graph of MySQL attack presented in
Section VII-B1. Squashed rectangle with dashed edges represent
provenance of configuration values.

Now consider Dossier was running on the MySQL server.
In the attack discussed above, Dossier will be able to log the
precise location of the configuration variable/parameter that
was changed along with the meta-information (e.g., PID of
the config writing process). This will give the IR team enough
information to reconstruct the attack, remove the malicious
library from the system, and identify the user that forgot to
log out of the system. We enacted the scenario described in
this section. An attack was launched on a vulnerable MySQL
server; however, our LKM was successfully able to log the
writes to the configuration file with no FPs or FNs. We then
ran our file deltas algorithm on top of the collected logs and
extracted the exact file delta showcasing the malicious write
causing the malicious code execution attack. The holistic graph
generated by Dossier is shown in Figure 6. During the attack,
the entire configuration file is rewritten after a single update,
and it costs 2.1KB of log data. However, after applying the file
delta algorithm, the storage overhead for this single update is
reduced to only 147 Bytes. Since [82] has shown that 99.3%
of configuration file updates of popular applications happen
less than 1000 times over their lifetime, the storage overhead
for a 1000 such updates amounts to only 147KB (after file-
delta computation), which is negligible compared to the total
size of audit logs.

2) Wordpress htaccess attack: For this case study, we chose
a vulnerability in WordPress [33], a widely used website
creation platform. The vulnerability, described in CVE-2020-
8658 [13], results from a vulnerable anti-CSRF implementation
within the htaccess plugin used by WordPress. It allows
an attacker to modify the .htaccess configuration file of
a website, take control of the website, and direct a victim
to a malicious web page instead of the legitimate website.
.htaccess is a sensitive hidden configuration file present
within web servers and often serves an attack vector to hide
malware, hide backdoors, inject content, and redirect search
engines to malicious websites.

We now consider a scenario where a company uses an

affected version of Wordpress. The use of .htaccess is enabled
within the server since WordPress and various WordPress
plugins use this file for in-directory tweaks to the web server’s
behavior. Moreover, the only logging implemented within the
web server is at the OS level via the Auditd subsystem on the
root machine. An attacker exploits the vulnerability present
within the Htaccess plugin to direct the victim to a malicious
web page with certain exploit code. The exploit code arbitrarily
edits the contents of the .htaccess file such that every time
the website is loaded from a search engine such as Google,
Bing, etc., the users are redirected to a malicious web page
instead of the legitimate company’s website. The attack might
go unnoticed for some time since the employees within the
company use the complete website URL for accessing the
website instead of getting redirected from search engines.
Eventually, the system administrators discover that the website
has been compromised and an Incident Response (IR) team is
asked to come in and investigate. The IR dig into the audit
logs and discover that there have been several updates on
the .htaccess file, including legitimate file revisions from
various WordPress plugins. However, the issue the IR team
faces is that they do not know which particular write operations
to the .htaccess file had been responsible for the attack.
This is because existing OS based audit logs do not contain
information about the exact contents of the write operation.

Now, consider the scenario that the system administrators
had Dossier running on the server monitoring the sensitive
.htaccess file. In the attack discussed above, Dossier will log
the precise content within the .htaccess file that was changed.
This will give the IR team sufficient information to reconstruct
the attack, remove the malicious contents from the file, and
identify the vulnerable plugin responsible for the exploit. In
summary, an attack was launched on a vulnerable WordPress
server; Dossier’s Linux kernel module successfully logged all
writes to the .htaccess file with no FPs or FNs. Moreover,
Dossier’s file diff algorithm extracted the exact file diff,
revealing the malicious write causing the website compromise.
Due to complete file rewrite, a single update costs around 698
Bytes during the attack. After applying the file delta algorithm,
the storage overhead is reduced to only 142 Bytes. Similarly, a
1000 such updates amounts to a negligible overhead of 142KB.

3) BIND-9 Dynamic Update Attack: For this case study,
we chose a vulnerability in BIND-9 [5] - a widely used
open source DNS server. BIND-9 can be used both as an
authoritative or as a caching DNS server and provides several
features such as load balancing, notify and dynamic update,
etc. The vulnerability in question, described in CVE-2017-
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3143 [12], allows an attacker to forge a valid TSIG signature
and issue unauthorized dynamic updates. The affected versions
of BIND servers rely solely on TSIG keys with no other
address-based ACL protection. An attacker who is able to send
and receive messages to an authoritative DNS server, and who
has knowledge of a valid TSIG key name for the zone and
service being targeted, may be able to manipulate BIND-9
into accepting an unauthorized dynamic update. The attacker
can leverage these capabilities to perform malicious dynamic
zone content manipulation.

Consider a scenario where a company uses an affected
version of BIND-9 to name their machines in their own
domain. The only logging implemented within the server
hosting BIND9 is at the OS level via the Auditd subsystem
on the root machine. An attacker with knowledge about the
TSIG key name exploits the aforementioned vulnerability to
forge valid TSIG signatures and issues unauthorized dynamic
updates to maliciously update the zone content within the
server. Eventually, the network administrators notice that the
server has been compromised and some of the DNS queries are
returning incorrect responses and the users within the company
are directed to wrong and potentially malicious websites. The
IR team is then called in to investigate the issue. The IR team
digs into the OS-level audit logs collected by the root machine.
Since the malicious update on the zone takes place dynamically
in-memory, no events in the log describe the malicious zone
update. Eventually, due to the semantic gap that exists within
the OS level logs, the IR could not conclude which particular
zone update operations had been responsible for the attack.

Now, consider the scenario that the system administrators
had Dossier running on the DNS server monitoring dynamic
updates to sensitive structs containing information about the
zone and the records enclosed within it. In the attack discussed
above, Dossier will successfully log all the dynamic updates
on the target zone variables annotated by the system admin-
istrators. This will give the IR team enough information to
reconstruct the attack, remove the malicious contents from the
zone, and identify that the attack exploited some vulnerability
within the dynamic zone update implementation of the server.
We enacted the scenario described in this section. We used
the dynamically updateable structure type dns_zone_t within
BIND to annotate the target zone variables at different struct
offsets. Moreover, we used function specialization optimization
and limited the instrumentation to the dynamic update handler
function i.e., update_action(). After annotation, Dossier used
static analysis (without pointer aliasing) to successfully mark
and instrument the dynamic updates (STORES) on the target
annotated variables with just one FN (100% precision, 84%
recall). Resultantly, Dossier was able to log almost all relevant
dynamic updates to the zone during our experimentation with
an average log overhead of 126 Bytes per update. This allowed
for a more holistic provenance graph generation including the
dynamic updates for investigating the underlying attack.

VIII. RELATED WORK

In Section II-C, we described the limitations of existing
provenance trackers that Dossier addresses, and complement
the discussion on related work here.

Taint tracking approaches have been demonstrated to work
effectively in concert with auditing, e.g., ProTracer [66] lever-

ages tainting at the granularity of execution unit to avoid log-
ging overhead. However, ProTracer does not log configuration
changes. Argos [73] taints memory blocks and instruments
malicious payloads to create network intrusion detection sig-
natures, but does not provide a general solution for logging
certain application-specific instructions. ShadowReplica [55]
and Taintpipe [67] implement techniques to speed-up dy-
namic dataflow tracking (DFT) but their analysis does not
taint specific application-state changes and instead focuses on
generating control flow profiles. Moreover, TaintBochs [45],
Rain [56], and UniSan [64] leverage taint analysis techniques
to analyze sensitive data lifetime, conduct reachability analysis
for inter-process DFT, and eliminate information leaks within
OS kernel respectively. In short, these prior taint tracking
works target different end-goals and do not seem to provide
an obvious solution for auditing specific application-state
changes.

Prior work has proposed techniques to tackle misconfigu-
rations that violate correctness properties of the systems [86],
including configuration validation and testing [83], [89], [78],
[88], and misconfiguration troubleshooting [41], [74], [80],
[81]. However, those techniques mostly target correctness
issues, but cannot deal with configuration-based attacks. A
few recent work has proposed solutions for detecting access-
control misconfigurations [47], [43], [82], [84]. However, as
discussed in Section II, configuration-based attacks are much
broader than access control configurations. Furthermore, few
work provides fine-grained, system-level forensic analysis.

Prior work [79], [51], [75] attempts to close the semantic
gap that exists in provenance analysis through instrumenting
function calls and arguments. However, these instrumentation-
based systems capture every function call rather than only cap-
turing function calls related configuration changes. Moreover,
configuration semantics are usually not captured at function
argument level as they can be assigned inside the function
and these systems will not capture them. Finally, these sys-
tems only log information per-application basis, and do not
utilize whole-system provenance graph. Thus, they do not
have mechanism to connect information flow between different
applications. On the other hand, Dossier inserts configuration
update information into the whole-system provenance graph to
reconstruct information from the whole system.

IX. CONCLUSION

In this work, we propose Dossier, a provenance tracker
that logs changes to the configuration state of an application.
Whether the change vector is file-based or memory-based,
Dossier can track configuration updates during runtime. To
log file-based configuration changes, Dossier features a light-
weight kernel module. For memory-based Dossier uses pro-
gram annotations and static analysis built on top of LLVM to
capture the memory-based config updates. During the inves-
tigation phase, Dossier stitches logs related to configuration
changes with the whole-system provenance graph to generate
a holistic provenance graph. Evaluation on realistic workloads
and attack scenarios shows that Dossier generated provenance
graphs can accurately reason about configuration-based attacks
with minimal runtime overhead.
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APPENDIX

A. thttpd Example

We use thttpd [30], a simple and portable HTTP server,
as a micro benchmark to evaluate Dossier’s technique for
tracking memory-based configuration changes. We modify
thttpd source code just to evaluate different cases of dynamic
configuration updates on one application. Specifically, we add
an update_config() function in the main loop of the program,
as shown in the following code snippet:

1 typedef struct {
2 int max_connections;
3 char* path_info;
4 short max_timeout;
5 } httpd_config;
6 // global configuration variables
7 httpd_config* server_conf;
8 int port;
9 // dynamic config update handler

10 void update_config(char* variable_name , char* value) {
11 if(strcmp(variable_name ,"port")){
12 port = get_int_value(value);
13 }
14 if(strcmp(variable_name ,"max_connections")){
15 server_conf ->max_connections = \
16 get_int_value(value);
17 }
18 if(strcmp(variable_name ,"path_info")){
19 server_conf ->path_info = value;
20 }
21 if(strcmp(variable_name ,"max_timeout")){
22 short* temp_timeout = \
23 &( server_conf ->max_timeout);
24 *( temp_timeout) = get_short_value(value);
25 }
26 }

We annotate the global variables, port and the server_conf

struct with offset. The update of port in Line 12 is the base
case, in which the destination of the STORE instruction is a
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variable. The update of struct variables max_connections and
path_info in Lines 16 and 19 are cases when the destination
of the STORE instruction is a GEP instruction. Furthermore,
the update of struct variable max_timeout in Lines 23– 24 is
a case of pointer aliasing, where the pointer temp_timeout is
loaded with the address of the annotated configuration variable
max_timeout. This pointer is then later used to refer to the
address of memory space of max_timeout in Line 24. Dossier
successfully marked and instrumented configuration variables
in all the STORE instruction cases.

B. Oracle Weblogic Server Attack

Consider an online shopping website that uses Oracle
BEA Weblogic servers [4] to manage users. One day the
system administrators of the online shopping website noticed
that sensitive information related to users of the website was
leaked on the public forum. The administrator started the
investigation to understand how the attack was performed and
who was responsible. Thus, the administrator issues a root-
cause analysis query on the sensitive database file to figure
out who accessed and opened that database file.

weblogic 
server

z.z.z.z

config.xmlsensitive.db

z.z.z.z

weblogic 
server

z.z.z.z

config.xml
sensitive.db

z.z.z.z

<CustomRealm ConfigurationData="java.util.Properties" 

Name="CustomRealm" RealmClassName="Maliciousrealm.jar" />

(a)

(b)

Fig. 7: Oracle weblogic server attack scenario (a) Provenance graph
generated by tradition solutions. (b) Holistic provenance graph gen-
erated by Dossier. Squashed rectangle with dashed edges represent
provenance of configuration values. We do not show configuration
value delete event used by attacker to hide footprints for readibility.

Provenance graph generated by using traditional prove-
nance tracker (e.g. SPADE [50]) is shown in Figure 7(a).
Even though, using this graph, the investigator can know that
the “weblogic server” process was responsible for reading the
sensitive file. However, the investigator quickly realizes that
the graph does not reveal how “weblogic server” process was
able to read that database file because external users are not
authorized to read that file.

In this attack, the investigator was unable to understand
how the “weblogic server” process reads that sensitive file
because the attacker used configuration-based attack to initiate
read event. Weblogic server uses config.xml file to store con-
figuration data. However, if this file is not properly protected
by the system-level access control, an attacker can write con-
figuration information to redirect server output through system
logs, database connections, etc. In this attack, the attacker
noticed that config.xml was not write protected so the attacker
inserts a pointer to a custom realm jar in the config.xml.
Note that access to the Weblogic server is controlled through
custom realm that manages authorization. The attacker inserted
following configuration value in the config.xml that points to
a custom realm jar file which enabled the attacker to access
database file. After that attacker removed that configuration
value from the config.xml to hide her attack footprints.
<CustomRealm

ConfigurationData="java.util.Properties"
Name="CustomRealm"
RealmClassName="Maliciousrealm.jar"

/>

With Dossier, the security investigator can understand the
root-cause of the attack. Holistic provenance graph generated
by Dossier is shown in Figure 7(b). The provenance graph
pinpoints that “weblogic server” process changed configuration
values to point to custom realm which authorized the attacker
to access the sensitive database file.
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