Forwarding-Loop Attacks in Content Delivery
Networks

Jianjun Chen*'¥, Jian Jiang§, Xiaofeng Zheng*Ti, Haixin Duan’#9,
Jinjin Liang*“, Kang Lill, Tao Wan**, Vern Paxson?¥,

*Department of Computer Science and Technology, Tsinghua University
fInstitute for Network Science and Cyberspace, Tsinghua University

iTsinghua National Laboratory for Information Science and Technology

{chenjjl13, zhengxfl2, liangjj09}@mails.tsinghua.edu.cn, duanhx@tsinghua.edu.cn
§University of California, Berkeley jiangjian@berkeley.edu
Ynternational Computer Science Institute vern@icir.org
||Department of Computer Science, University of Georgia kangli@cs.uga.edu
**Huawei Canada tao.wan@huawei .com

Abstract—We describe how malicious customers can attack
the availability of Content Delivery Networks (CDNs) by creating
forwarding loops inside one CDN or across multiple CDNs. Such
forwarding loops cause one request to be processed repeatedly or
even indefinitely, resulting in undesired resource consumption and
potential Denial-of-Service attacks. To evaluate the practicality
of such forwarding-loop attacks, we examined 16 popular CDN
providers and found all of them are vulnerable to some form of
such attacks. While some CDNs appear to be aware of this threat
and have adopted specific forwarding-loop detection mechanisms,
we discovered that they can all be bypassed with new attack tech-
niques. Although conceptually simple, a comprehensive defense
requires collaboration among all CDNs. Given that hurdle, we
also discuss other mitigations that individual CDN can implement
immediately. At a higher level, our work underscores the hazards
that can arise when a networked system provides users with
control over forwarding, particularly in a context that lacks a
single point of administrative control.

I. INTRODUCTION

Content Delivery Networks (CDNs) are widely used in the
Internet to improve the performance, scalability and security
of websites. A CDN enhances performance for its customers’
websites by redirecting web requests from browsers to ge-
ographically distributed CDN surrogate nodes. A surrogate
serves the content directly if cached, or forwards requests to the
origin site otherwise. To improve availability, surrogates absorb
distributed denial-of-service (DDoS) attacks by distributing the
attack traffic across many data centers. Some CDN providers
also providle WAF (Web Application Firewall) services to
normalize traffic and filter intrusions to their customer’s web
sites.

Permission to freely reproduce all or part of this paper for noncommercial
purposes is granted provided that copies bear this notice and the full citation
on the first page. Reproduction for commercial purposes is strictly prohibited
without the prior written consent of the Internet Society, the first-named author
(for reproduction of an entire paper only), and the author’s employer if the
paper was prepared within the scope of employment.

NDSS 16, 21-24 February 2016, San Diego, CA, USA

Copyright 2016 Internet Society, ISBN 1-891562-41-X
http://dx.doi.org/10.14722/ndss.2016.23442

In this work we present “forwarding-loop” attacks, which
allow malicious CDN customers to attack CDN availability
by creating looping requests within a single CDN or across
multiple CDNs. Forwarding-loop attacks allow attackers to
massively consume CDN resources by building up a large
number of requests (or responses) circling between CDN
nodes. The impact can become more severe in the (common)
case where attackers can manipulate DNS records to dynami-
cally control a loop’s IP-level routing on a fine-grained basis.

Although many CDN providers have internal mechanisms
(such as appending custom HTTP headers like CloudFlare’s
CF-Connecting-IP [19]) to detect repeated requests when
they circle back, we find that an attacker can bypass such
defense mechanisms by using features offered by some
other CDNs to filter HTTP headers. Our experiments with
16 commercial CDNs show that all of them are vulnerable
to forwarding-loop attacks, even with their existing defense
mechanisms.

We also examine the threat of stealthy forwarding-loop
attacks. In the Dam Flooding Attack, an attacker secretly
and gradually accumulates a large number of pending CDN
requests over a lengthy period (hours). They then trigger a huge
volume of cascading traffic by suddenly providing bandwidth-
consuming responses and controlling all responses to arrive
simultaneously. Worse, we find that internal CDN features—
such as automatic server probing (Azure China), forwarding
retries (Akamai and CloudFront), and proactive decompression
of gzip’d responses (Akamai, Baidu and CloudFlare)—can
amplify the DoS effect of forwarding-loop attacks and further
exacerbate the load on the CDN.

Overall, we make the following contributions:

1) We describe forwarding-loop attacks that broadly
threaten CDN providers. Our study shows that the
amplification attacks are severe and can consume
a huge volume of resources in commercial CDNs
at low cost. The attacks can potentially undermine
the security provided by CDNs, which are usually
considered robust against DoS attacks.

2) We performed controlled tests on 16 popular CDN
providers to verify the practicality of such attacks.
Although some CDN providers implemented defense
mechanisms for mitigating forwarding loops, we
show that those defenses can be bypassed.

3) We present the Dam Flooding attack, a highly dam-
aging type of forwarding-loop attack.

4) We propose four approaches to preventing or mit-
igating forwarding-loop attacks, and discuss their
advantages and limitations.

We organize the rest of this paper as follows. Section II
describes CDN operation, especially forwarding and filtering
techniques. In Section III we present various forwarding-
loop attacks and analyze the factors affecting them. We also
described our experiments to construct loops within and across
CDNs, and the “Dam Flooding” attack leveraging streaming
HTTP responses. We discuss possible defenses to prevent or
mitigate forwarding-loop attacks in Section IV and related
research regarding forwarding loops and CDN security in
Section V. We conclude in Section VI.

II. BACKGROUND

CDNes are distributed systems with large numbers of servers
deployed across the Internet. Initially created to improve
website performance and scalability, many CDNs also provide
security features such as DDoS protection and Web Appli-
cation Firewalls (WAFs) for websites. CDNs have evolved
to become important Internet infrastructure. For example, the
leading CDN provider Akamai claims that it alone delivers
15-30% of all Web traffic [1].

Web access involving a CDN includes two steps: first,
a user’s request is directed to a CDN server geographically
close to the user; second, the CDN server obtains the content
for the responding to the request. The first step is called
request routing [2]. Commonly used request-routing techniques
include URL rewriting and DNS-based request routing [2].
URL rewriting requires website owners to change website
URLSs to use CDN-assigned subdomains that resolve to CDN
servers. DNS-based request routing instead works by chang-
ing the DNS resolution of website domains, either directly
mapping to CDN server IP addresses, or using CNAMEs to
chain to CDN subdomains. These request-routing techniques
usually determine the selection of edge (entry) server, but
users can also override a CDN’s selection by directly con-
necting to a desired edge server using its IP address rather
than hostname [22]. Users can obtain CDN IP addresses
by resolving CDN subdomains via public platforms such as
PlanetLab [20]. We verified that this technique for overriding
a CDN’s selection works for all CDNs in our study.

The second step, i.e., how the CDN server obtains the
requested content, also has two different modes: push and pull.
In the push mode, website owners upload their content to the
CDN’s servers in advance. In the pull mode, the CDN server
works as a reverse proxy with caching. It firstly tries to respond
from the local cache. In the case of a cache miss, it forwards
the request to the original website to retrieve the content. Most
CDNs support both modes. The vulnerability we examine in
this paper only occurs when using pull mode. In pull mode, the
cache hit ratio becomes an important indicator for measuring

| Request | Forwarding |
| example.com | Server IP |

HTTP GET/POST HTTP GET/POST

http://example.com http://example.com
Browser >‘ CDN Node

Fig. 1.

Web Site
(example.com)

Normal CDN forwarding behavior.

a CDN’s performance. The higher the ratio, the more requests
that the CDN answers out of its cache, significantly reducing
response latency and as well as the load imposed on the origin
website. However, a user can force requests to come from the
origin website instead of the CDN’s cache. First, adding a
no-cache request header will make the CDN re-validate the
response from the origin server [6]. Second, POST requests
usually will write through to the origin server [7], [16]. In
addition, most CDNs provide ways for customers to configure
the CDN to not cache certain URLs.

Typical commercial CDNs usually have massive bandwidth
and computational resources distributed around the Internet,
making them much more resilient to DDoS attacks than most
of websites. DDoS traffic targeting a CDN-protected website
will be directed to CDN servers distributed across data centers
with ample bandwidth, and then absorbed or blocked before
arriving the original website. Indeed, capacity for mitigating
DDoS attacks has become a “selling point” for today’s com-
mercial CDNG.

Many CDNs also provide an additional security service
called content filtering, or WAF. A WAF applies a set of
rules to each HTTP request and response. Generally, these
rules cover common attacks such as cross-site scripting (XSS)
and SQL injection. By customizing WAF rules, customers can
have their CDNs examine HTTP requests and filter out some
suspicious traffic before it reaches the origin website.

III. FORWARDING-LOOP ATTACKS

Malicious customers of CDNs can deliberately manipulate
the forwarding process (in the pull mode) to create forwarding
loops inside CDNs. Forwarding loops can cause CDNs to
process one client request repetitively or even indefinitely. The
consequent amplification effect allows malicious customers to
launch, with little resources and cost, resource-consuming DoS
attacks against CDNS.

In general, as shown in Figure 1, before a CDN node
forwards an HTTP request from a client, it checks the Host
header of the request to look up any customer-specified for-
warding destination. The node then connects to the forwarding
destination and relays the request. In the benign case, the
forwarding destination returns a response that is further relayed
by the CDN node to the client. However, if an attacker
intentionally configures the forwarding destination to point to
another CDN node, the forwarding process can continue, and
might eventually form a loop. Figure 2 illustrates a conceptual
view of a forwarding loop between three CDN nodes. Note
that the three nodes could be distributed either within a single
CDN or across different CDNs.

We have identified four approaches to create forwarding
loops: 1) self loop, which loops within a single CDN node;

Request Forwarding
example.com B
HTTP GET/POST
http://example.com n
CDN Node Web Site
Browser
A (example.com)
HTTP GET/POST

http://example.com

HTTP GET/POST
http://example.com

CDN Node ——— CDN Node
C B
HTTP GET/POST

http://example.com

Request Forwarding Request Forwarding

example.com A example.com [}

Fig. 2. A conceptual view of a CDN forwarding loop created by manipulating
forwarding configuration: see Section III-B through Section III-E for the
detailed mechanisms for constructing forwarding loops.

TABLE 1. VULNERABILITY OF THE MEASURED CDNS TO FOUR TYPES
OF FORWARDING-LOOP ATTACKS. (“Likely” refers to inference from indirect
evidence.)

Self-Loop Intra-CDN Inter-CDN Dam Flooding
loop loop
Akamai v v
Alibaba v v
Azure (China) v v v v
Baidu v v
CDN77 v v v
CDNlion v v v
CDN.net v v v
CDNsun v v v
CloudFlare v v
CloudFront v v
Fastly v v
Incapsula v 4
KeyCDN Likely v v v
Level3 v v
MaxCDN Likely v v v
Tencent v v

2) intra-CDN loop, which loops around multiple nodes of one
CDN provider; 3) inter-CDN loop, which loops across multiple
CDNs; and 4) CDN Dam Flooding, which couples forwarding-
loop attacks with timely controlled HTTP responses to signif-
icantly increase damage.

We gathered a list of popular CDNs! and signed up with
those (or their resellers) that provide free or free-trial accounts

"Most from http://www.cdnplanet.com/cdns/.

without strong customer identity verification (except Alibaba
and Tencent, per Section III-G). We then measured various
aspects of the CDNs using our testing accounts. This approach
enables us to measure 16 popular CDNs around the world. We
found all of them vulnerable to some form of forwarding-loop
attacks. Table I presents the 16 CDNs and their vulnerability to
the four types of attack. While most CDNs can defend against
the first attack, little more than half can defend against the
second, and none can defeat the last two.

We chose to measure the 16 CDNs that provide free or
free-trial accounts without strong identify verification to em-
phasize the fact that forwarding-loop attacks can be launched
anonymously and with little cost. Rigorous customer authen-
tication can help raise the bar, but it does not suffice to
prevent forwarding-loop attacks. We further discuss the issue
of anonymity and cost in Section III-G.

As we will present in detail, the root cause of forwarding-
loop attacks is that CDN customers have flexible control
over their forwarding configuration, and CDNs lack sufficient
defensive mechanisms to ensure that these configurations—
especially across multiple customers or multiple CDNs—will
not cause requests to be processed repeatedly. The fact that
CDN customers can override edge-server selection of CDNs
(as explained in Section II) further enables forwarding-loops
attacks on any CDN public IP address or data center that
an attacker seeks to target. Moreover, we identified a number
of factors that affect the efficacy of forwarding-loop attacks.
In the following sections, we first discuss how these factors
interact with forwarding-loop attacks and vary across CDN
implementations. We then present detailed mechanisms for
the four attacks, along with measurements and experiments
to assess them.

A. Factors affecting Forwarding Loops

Modification of the Host header. The Host header of a
request plays a key role in the forwarding process, as well as in
forwarding-loop creation. A necessary condition for a request
to create a forwarding loop is that all involved CDN nodes
must forward the request in such a way that the successor node
treats it as a benign request, and continues the forwarding.

Whether the successor node accepts the forwarded request
depends on the Host header. We can classify forwarding loops
into two categories based on whether the Host header changes
during the forwarding loop. Figure 2 shows the first category:
a request is issued for the original domain of the website, and
when forwarded by a CDN node, its Host header does not
change, thus not affecting acceptance and further forwarding
of the forwarded request.

Another type of forwarding loop has a changing Host
header. Our measurements show that CDN nodes can change
the Host header to reflect the forwarding destination, depend-
ing on the request-routing mechanism and the form of the
forwarding destination. Table II presents detailed results. We
note that forwarding loops are feasible as long as all involved
nodes keep a valid domain name in the Host header, but can
be prevented by simply modifying the Host header to an IP
address, because we find that no CDN accepts requests with an
IP address in the Host header. As shown in Table II, this case
only occurs at KeyCDN and MaxCDN when the request is

TABLE II.

applicable.)

HOST MODIFICATION BEHAVIORS. (“N/A” indicates that the feature is either not available for testing due to our account’s limitations, or not

issued with the CDN’s subdomain and the form of forwarding
destination is IP address. In all other cases we could test, the
feasibility of forwarding loops is not affected.

Modification of other header fields. CDNs also vary
regarding changing other header fields when forwarding a
request. Such behaviors, summarized in Table III, affect the
efficacy of forwarding loops.

We first find that 9 CDNs depend on standard or self-
defined headers to detect forwarding loops. We measured these
results by connecting our origin server and, separately, each
commercial CDN node in a loop. If requests in the loop always
stop in a short time unless we remove a certain header or set
the value of certain header on our origin server, then we deduce
that the CDN uses the header for loop detection. We find that
Akamai and Tencent add Akamai-Origin-Hop and X-Daa-
Tunnel headers with integer values that count forwarded hops.
These appear to restrict forwarding to maximum values of 12
and 6, respectively. Alibaba, CloudFront and Level3 append
standard Via headers with the server’s hostname. They also
check for the presence of certain strings within any existing
Via header to detect loops. Fastly also appends a self-defined
header Fastly-FF with its hostname, and rejects a request if
its hostname already appears in the header value. Incapsula
adds a new header, Incapsula-Proxy-ID, with the ID set to
its internal identifier, basing loop detection on the presence
of this header. Baidu and CloudFlare servers append their IP
addresses to the X-Forwarded-For header, and also add the
self-defined header CF-Connecting-IP (Baidu confirmed that
they have a partnership with CloudFlare, which CloudFlare
later announced). Baidu and CloudFlare servers reject a request
if its IP address already appears in the X-Forwarded-For

Request with CDN Subdomain Request with Customer Domain
Forwarding to IP | Forwarding to Domain || Forwarding to IP | Forwarding to Domain
Akamai N/A Configurable
Alibaba Configurable Configurable
Azure (China) N/A Request Domain
Baidu N/A Request Domain
CDN77 Request Domain Forwarding Domain Request Domain Forwarding Domain
CDNlion Request Domain Forwarding Domain Request Domain Forwarding Domain
CDN.net Request Domain Forwarding Domain Request Domain Forwarding Domain
CDNsun Request Domain Forwarding Domain Request Domain Forwarding Domain
CloudFlare N/A Request Domain
CloudFront N/A ‘ Request Domain N/A Forwarding Domain
Fastly N/A Request Domain
Incapsula N/A Request Domain N/A
KeyCDN Forwarding IP ‘ Forwarding Domain Request Domain Forwarding Domain
Level3 N/A N/A Request Domain
MaxCDN Forwarding IP ‘ Forwarding Domain Configurable
Tencent N/A Request Domain
TABLE IV. HEADER SIZE LIMITATION (SINGLE/ALL HEADERS)

Vendor Limitation H Vendor Limitation
Akamai 16KB/16KB || CloudFlare 32KB/92KB
Alibaba 32KB/64KB || CloudFront 24KB/24KB
Azure (China) | 20KB/20KB || Fastly 64KB/64KB
Baidu 32KB/92KB || Incapsula 25KB/>1600KB
CDN77 16KB/64KB || KeyCDN 8KB/32KB
CDNlion 16KB/64KB || Level3 9KB/12KB
CDN.net 16KB/64KB || MaxCDN 32KB/156KB
CDNsun 16KB/64KB || Tencent 6KB/6KB

header, or given the presence of a CF-Connecting-IP header.

We also find that all CDNs except KeyCDN, MaxCDN,
and Tencent increase the header size whenever forwarding a
request, usually by adding or appending header fields like Via
or X-Forwarded-For, although not necessarily using these
fields for loop detection. This behavior causes forwarding
loops to eventually stop, because all CDNs implement bounds
on the header size of acceptable requests. If in each round of a
forwarding loop, the header size of the request increases, then
the loop will break when the header size exceeds the bound
at any node. Table IV summarizes the header size limitations
of different CDNS.

Several CDNs reset the value of certain header fields
instead of appending on them. CDN77, CDN.net, CDNlion
and CDNSun reset the Via header, and KeyCDN resets the X-

TABLE III. HEADER (EXCEPT HOST) MODIFICATION BEHAVIORS
Size Increase Loop Detection Reset Filtering
Akamai Via, X-Forwarded-For Akamai-Origin-Hop
Alibaba Via, X-Forwarded-For Via
Azure (China) X-Forwarded-For
Baidu X-Forwarded-For X-Forwarded-For, CF-Connecting-IP
CDN77 X-Forwarded-For Via
CDNIlion X-Forwarded-For Via
CDN.net X-Forwarded-For Via
CDNsun X-Forwarded-For Via
CloudFlare X-Forwarded-For X-Forwarded-For, CF-Connecting-IP
CloudFront Via, X-Forwarded-For Via
Fastly Fastly-FF, X-Varnish Fastly-FF Non-self-defined
Incapsula Incap-Proxy-1D, X-Forwarded-For Incap-Proxy-1D
KeyCDN X-Forwarded-For
Level3 Via, X-Forwarded-For Via
MaxCDN Any header
Tencent X-Daa-Tunnel
) TABLE V. FORWARDING TIMEOUTS AND THE ADOPTION OF ABORT
Abort Forwarding FORWARDING.
'7T|meout occurs at A Forwarding -
Connection-close event X >< Timeout (second) Abort Forwarding
propagates to C and then B i
(o —{< (o e
Loop Formed Loop Terminated Alibaba 60 v
Azure (China) 900 v
No Abort Forwarding Baidu 100 v
Timeout occurs at A CDN77 60
[R
C keeps the forwarding CDNIlion 60
connection to B CDN .net 60
n CDNSsun 60
Loop Formed Loop Continued
CloudFlare 100 v
Fig. 3. The differences between abort forwarding and no abort forwarding. CloudFront 90 v
Fastly configurable (max 75)
. Incapsula 360 v
Forwarded-For header to its own IP address. As we shall see, P
these behaviors cause undesirable interactions that increase the KeyCDN 60 v
efficacy of forwarding-loop attacks. Level3 60
Fastly and MaxCDN support WAFs that allow customer- MaxCDN 60 v
defined rules to remove HTTP headers in requests [S] [14]. Tencent 10 v

According to our measurements, Fastly prevents removal of
the headers added by its own servers, while MaxCDN does
not appear to impose any such limitation.

Handling timeouts. After forwarding a request to its
destination, a CDN node waits for a response until a timeout
occurs. Table V shows the timeout periods we measured,
ranging from 60 seconds to 900 seconds.

When a timeout occurs at a node in a forwarding loop,
the node closes the corresponding connection to its successor.
This closing action triggers a client-side connection close
event at its successor node. If the successor node reacts by
abort forwarding, i.e., closing the corresponding forwarding

TABLE VI DNS RESOLUTION BEHAVIORS.

DNS Cache (resolver)|Minimum TTL (second)‘

Akamai per CDN node ~ 60
Alibaba per data center ~ 60
Azure (China) per CDN node ~0
Baidu per CDN node ~ 60
CDN77 Google Public DNS ~0
CDNlion Google Public DNS ~0
CDN.net Google Public DNS

CDNsun Google Public DNS ~0
CloudFlare per data center ~0
CloudFront per data center ~0
Fastly per CDN node ~ 0
Incapsula N/A N/A
KeyCDN Google Public DNS ~ 0
Level3 per CDN node

MaxCDN per CDN node ~0
Tencent per data center

connection, the close event will further propagate to the next
node, and so forth. In a forwarding loop, abort forwarding
propagates faster than request forwarding, because a client-
side connection close event occurs immediately after receiving
a single FIN packet, while receiving and forwarding a request
requires many more packets. If all CDN nodes involved in
a forwarding loop adopt abort forwarding, then the reaction
triggered by the timeout will eventually catch up with the
request forwarding to stop the loop. In this way, the life-
cycle of the forwarding loop is bounded by the minimum
timeout of the nodes plus the time for the abort event to
catch up to the forwarding. However, if one node does not
implement abort forwarding, the abort propagation will stop
at that node; consequently, the request continues to circulate
among all nodes in the loop.

Figure 3 illustrates how a timeout event is propagated to
stop a forwarding loop if all nodes in the loop implement abort
forwarding; and, in comparison, how a timeout event is locally
limited if not all nodes support abort forwarding.

As shown in Table V, numerous CDNs do not adopt abort
forwarding when a client-side connection closes.

DNS resolution behaviors. Per Table II, 15 out of 16 mea-
sured CDNs (except Incapsula) support using domain names
as forwarding destinations. For these CDNs, an attacker can
change the DNS records of the forwarding domains to control
an ongoing forwarding loop dynamically, e.g., switching the
loop from one set of IP addresses to another set of IP addresses.

Our measurements show that, in general, CDNs do not
share DNS results (via common caches or resolvers) across
their servers or data centers. They also respect the time-to-
live (TTL) value in DNS responses. Per Table VI, of the
15 CDNs supporting the use of domain names as forwarding
destinations, 6 (Akamai, Azure China, Baidu, Fastly, Level3

TABLE VII. SUPPORT OF HTTP STREAMING.

’ Request Streaming | Response Streaming

Akamai v v
Alibaba v
Azure (China) v
Baidu
CDN77
CDNlion
CDN.net
CDNsun
CloudFlare
CloudFront v
Fastly

AN

Incapsula v
KeyCDN
Level3 v
MaxCDN

NSISTISNIN N NN NN NN NN NS

Tencent

and MaxCDN) deploy independent DNS resolvers on each
node. Alibaba, CloudFlare, CloudFront and Tencent have one
or more DNS resolvers shared per data center. The others use
Google Public DNS, which deploys different instances across
geographical locations using anycast. Among the 15 CDNs we
could measure, Akamai, Alibaba, and Baidu’s DNS resolvers
set a minimum TTL of 60 seconds; Level3’s resolver can set a
minimum TTL of 5 sec; the other CDNs appear to respect TTL
values in DNS responses even when set to zero (no caching).
This latter behavior allows an attacker to dynamically reroute
an ongoing loop in a fine-grained and timely manner.

We note that self-loops, intra-CDN loops, and inter-CDN
loops do not require dynamic rerouting via DNS, but its avail-
ability provides additional flexibility for attackers to create and
control forwarding loops. For dam-flooding attacks, this feature
is required in the flooding phase to change the forwarding
destination (Per Section III-E).

Non-streaming versus streaming. Attackers expect that
forwarding loops should not only last indefinitely, but also
propagate data as quickly as possible in order to consume
maximal resources. One important factor related to the speed of
a forwarding loop is whether a CDN supports HTTP stream-
ing. HTTP streaming is a feature of HTTP 1.1 enabled by
announcing a Transfer-Encoding: chunked header instead of
the Content-Length header. It provides a persistent connection
to transmit dynamically generated content on demand without
knowing the content length in advance. For forwarding loops,
a streaming-compatible CDN node will start relaying a request
or response to its next hop immediately after receiving its
initial chunk, rather than waiting for the complete content.
This makes the loop circulate faster. In order to initiate a
forwarding loop with HTTP streaming, all involved nodes must
support this feature. Our measurements show that while 9 out
of the 16 CDNs do not accept HTTP streaming in requests,

all support streaming responses (Table VII).

Figure 4 presents how non-streaming and streaming loops
generate different traffic patterns. We presume the path be-
tween two nodes A and B is symmetric with network latency
I, and the request (or response) circling around A and B
requires time ¢ to fully transmit. Assuming the data is always
transmitted at full bandwidth, both the non-streaming and the
streaming loops generate square waves along (each direction
of) the path between A and B, with the same pulse height
representing the full bandwidth, and the same pulse width
reflecting ¢. Yet, the periods of the two waves (i.e., the round-
trip times of the two loops) are different. While the square
wave generated by the non-streaming loop has a period of
2 x (t+1), the square wave caused by the streaming loop has
a period of 2 x [.

As the streaming loop runs faster, it keeps the path busier
(in both directions). If the data is large enough so that ¢ > 2x1,
then the neighboring traffic pulses caused by the streaming
loop overlap, which means that the path is fully occupied.
In practice, overlaps of two or more rounds of a streaming
loop could also result in higher traffic peaks than that of a
non-streaming loop, because the data transmission between
two successive nodes might not be able to utilize all available
bandwidth due to factors such as TCP’s congestion control.

We conducted a local experiment to verify our analysis. We
set up two Nginx 1.8.0 servers, both connected to the same
Ethernet. To simulate an Internet environment, we used the
tc Traffic Control tool to add 125 ms of network latency for
each server. In this setting, the full bandwidth is 100Mb/s and
the network latency is 250ms. We first sent a single S00KB
POST request to create a streaming loop between the two
servers by configuring their Nginx instances to disable request
body buffering. We then repeated the procedure with a non-
streaming loop setting.

Figure 5 shows the traffic in one direction generated via
non-streaming and streaming loops. As expected, the non-
streaming loop generates a periodic wave; each distinct pulse
represents one round of the loop; the peaks near 179KB/s.
In comparison, multiple rounds of the streaming loop overlap
because the time needed to transmit the request is much higher
than the network latency (with the effect of TCP slow start),
resulting in a curve without distinct pulses and much higher
peaks (about 443KB/s).

B. Self-Loop

Self-loops occur when requests are forwarded circularly
within a single CDN node. The attack is simple to mount:
the attacker only needs to specify the forwarding destination
of their domain as the loopback address (i.e., 127.0.0.1), or
the IP address of a given CDN node. Yet self-loops can be
particularly damaging, because the circulation happens without
network latency, potentially consuming resources very quickly.

We found that 13 out of 16 CDNs’ web interfaces accept
the loopback address or the IP address of their nodes as
forwarding destinations. Baidu and CloudFlare however do not
allow such forwarding destinations. CloudFront further rejects
specifying forwarding destinations using any raw IP address or
“localhost”. It is worth noting that merely enforcing a blacklist

R

|

T T
|

Non-streaming Loop Streaming Loop

Fig. 4. The difference between non-streaming and streaming loops.

450
1 oA
400 o T i 1
350 ‘/\ /7\\ \\ /\ 4 ‘x\ f\ “ \ ‘\“\ ‘/\ (f ‘Q ’x\\ //'\\ M /\\ “0
VUYATM A VAAAL
3000 | Ul o\
" | I S |
2250 ? : e—e streaming
5200 / »— non-streaming
150 ?
100
50|
00 10 20 30 40 50 60
Seconds
Fig. 5. Traffic generated by a single request (S00KB) in a non-streaming

versus a streaming loop.

of loopback and internal IP addresses at the web interface does
not suffice to defend against self-loops. For CDNs supporting
domain names as forwarding destination, the attacker can use
this feature to bypass blacklists implemented at the web in-
terface. For example, CloudFlare allows specifying a CNAME
domain for the forwarding destination, enabling an attacker
to later change the resolution to the loopback address or a
CloudFlare IP address.

We also tested three popular open-source reverse proxies
that are commonly used by commercial CDNs: Squid, Nginx,
and Varnish. Both Nginx and Varnish by default allow self-
loops, and we also could not find any option or popular
extension for loop-prevention. Squid prevents loops by adding
a Via header to forwarded requests and rejecting incoming
requests that contain the same hostname in its Via header.
This defense is similar with those of the 9 loop-aware CDNs
presented in Table III.

Testing the feasibility of self-loop attacks on commercial
CDN s requires care to avoid potentially inducing considerable
damage. The 9 loop-aware CDNs are not vulnerable to this
attack, while the other 7 CDNs are likely vulnerable. Among
the 7 CDNs, 5 (Azure China, CDN77, CDNlion, CDN.net,
CDNissun) have size-increasing headers, per Table IV. For these
CDNs, we found a technique to infer some further information.

We first send a request to one CDN node with a size
exceeding its maximum value, and record the corresponding
response (e.g., 400 Bad Request—Request Header Or

Cookie Too Large). Next, we send another self-loop request
to the same node but slightly smaller (200 bytes less) than
the size limit. Doing so ensures that if the CDN is vulnerable
to self-loops, the crafted request can at most only loop a few
times before reaching the header size limitation. If for both
requests we observe the same response indicating an excessive
request size, we can infer that the CDN is vulnerable to self-
loop attacks. Otherwise, we conclude that the CDN prohibits
request forwarding to the loopback or self address. Using this
technique to test the 5 CDNs, we find only Azure (China) is
vulnerable to self-loop attacks.

The remaining two CDNs (KeyCDN and MaxCDN) are
still likely vulnerable to self-loop attacks.

Experiments. We conducted two local experiments using
a Linux machine running an Nginx server to understand the
potential consequences of self-loops. We first tested with the
default configuration of Nginx, finding that request-forwarding
to a loopback address circulated 511 times in =~ 0.1 seconds
before returning the error response 400 Request Header Or
Cookie Too Large. By default Nginx limits the size of a single
header to not exceed 8KB. When forwarding a request, Nginx
appends its address in a X-Forwarded-For header, causing
the header size to increase. We then removed the header size
limitation and conducted the experiment again. This time the
self-loop ran 28,231 times in 5 seconds, ultimately returning
a 504 error because the loop had exhausted all of the source
ports available for loopback connections. (The Linux kernel’s
default port range for a user-space application spans 32,768—
61,000.)

As presented in Table III and Table IV, Azure (China) is
vulnerable to self-loop attacks and increases the header size
when forwarding a request; therefore, it is subject to the case
demonstrated in the first experiment. Self-loops on KeyCDN
and MaxCDN, which do not increase the header size per
Table 1V, likely behave like the second experiment; that is, they
could exhaust all source ports of localhost before a timeout
occurs (60 seconds, per Table V).

C. Intra-CDN Loops

Attackers can also create forwarding loops across multiple
nodes within a single CDN. As mentioned above, 15 CDNs
(all except Incapsula) allow customers to use domain names
as forwarding destinations. When forwarding a request to a
domain, 10 of the 15 CDNs (except Azure China, Baidu,
CloudFlare, Fastly and Tencent) change the Host header
to reflect the forwarding domain. For each of these CDNs,
attackers can create forwarding loops across multiple nodes by
chaining multiple attacking accounts using multiple forwarding
domains. For example, they can set up account A; forwarding
domain D; to domain Ds, account A forwarding domain Do
to domain D3, and so forth. Account A,, closes the loop by
forwarding domain D,, to domain D;. This creates a loop
across n domains, which can further be mapped to different
CDN nodes.

Attackers can also create loops across multiple CDN nodes
by dynamically changing forwarding destinations using DNS.
As shown in Table VI, for the 15 CDNs supporting domain
names for forwarding, none of these CDNs share a global DNS
cache. Thus, different CDN nodes will independently resolve

an attacker’s forwarding domain. Attackers can create loops
between two nodes A and B of the same CDN by controlling
the DNS resolution of their forwarding domains so that queries
from A are provided with the IP address B, and vice versa.
Depending on how a CDN manages its DNS resolutions, the
attacker might need to select A and B from different data
centers or regions.

That said, we note that this attack does not affect the
9 CDNs that employ loop-detection headers.

Experiments. We conducted a proof-of-concept experi-
ment on MaxCDN. We used two MaxCDN nodes plus one
VPS (Virtual Private Server) under our control, employing the
second strategy described above to form a three-node loop.
The VPS acts as a transparent HTTP proxy to collect data
and minimize harm. We also added a 0.6 seconds delay at our
HTTP proxy to slow down the loop speed to ensure that the
experiment did not cause significant real-world damage. We
ran the experiment for 60 seconds and received 59 requests at
our VPS for only one request we sent out.

D. Inter-CDN Loops

If attackers extend the multiple-node forwarding loop to
span multiple CDNs, they can evade the protection of loop-
detection headers to attack all 16 CDNs. This approach works
by chaining loop-aware CDNs with other CDNs that disrupt
the loop-detection headers.

As presented in Section III-A and Table III, Fastly
and MaxCDN provide customer-defined header filtering. The
header filtering feature of Fastly does not facilitate evading
loop detection because Fastly adds a non-filterable loop detec-
tion header. However, including MaxCDN in a chain enables
disrupting all loop-detection headers because it provides un-
limited header filtering. L.e., attackers only need to add one
MaxCDN node in their forwarding loops to attack even loop-
aware CDNs.

The behavior of resetting headers also enables evasions
of loop detection. As shown in Table III, CDN77, CDNIlion,
CDN.net and CDNsun reset Via, a standard header used by
Alibaba, CloudFront and Level3 to detect forwarding loops.
Therefore, attackers can mount a forwarding loop between any
one node from the former 4 CDNs and nodes from the latter
3 CDNs.

Another use of header filtering and header resetting is
to counter the effect of increasing header size so that the
life-cycle of a forwarding loop escapes the bound normally
imposed by header-size limitations. For example, we can form
a loop among one CloudFront node, one CDN77 node and
one KeyCDN node. The CDN77 node resets the Via header
used by CloudFront for loop detection. The KeyCDN node
resets the X-Forwarded-For header, which appears to be the
only header whose size would otherwise steadily increase by
CloudFront and CDN77. KeyCDN itself does not detect loops,
nor does it increase header sizes. In addition, because CDN77
does not adopt abort forwarding, forwarding timeouts will not
terminate the forwarding loop. In principle, such loops could
last indefinitely.

Experiments. We created a forwarding loop among 4 sys-
tems: CloudFlare, CDN77, MaxCDN and a server under our

Request Forwarding attacker.com 4

DNS Server

example.com | attacker.com

1
Attacker | ——— > CDN Node
A

Attacker
Server

{\‘83

CDN Node 4— CDN Node
Request Forwarding Request Forwarding
example.com A example.com (63

Fig. 6. The process of a CDN Dam Flooding Attack: 1) the attacker client
sends a request to A; 2) A queries attacker.com to forward the request,
and is directed to B; 3) the request circulates across B, C, and back to
Aj; 4) the attacker points attacker.com to his server; 5) the next DNS
query for attacker.com from A is mapped to the attacker’s server; 6) A
forwards the request to the attacker’s server; 7) the attacker’s server replies
with a streaming response; 8) the streaming response flows through C' and B,
then back to A, repeating many times; 9) A finally relays the response to the
attacker client.

control. We configured MaxCDN to delete any header that
detects loops or increases header size. We use the CDN77
node’s no-abort-forwarding to counter the effect of forwarding
timeouts. Again, we used our server as a transparent HTTP
proxy with a delay of 0.6 seconds to collect data and limit
the resource load imposed by the loop. We initiated the loop
using a single request; it lasted more than 5 hours, passing
17,266 requests through our server. When the loop finally
stopped, a 522 error was received, indicating that CloudFlare
could not connect to our server. Our server also received
many retransmitted TCP packets, from which we infer that the
loop ceased because of network connectivity issues between
CloudFlare and our server.

E. The CDN Dam Flooding Attack

As presented in Section III-A, HTTP streaming makes
forwarding-loop attacks more potent by enabling them to “fill
the pipe” with traffic. However, for the attacks discussed above,
Azure (China) is the only applicable target for streaming loops,
because it is the only CDN that both supports streaming
requests and does not deploy loop detection (per Table III
and Table VII). Since all CDNs we examined support HTTP
streaming for responses, we can extend the attacks by employ-
ing responses rather than requests to create streaming loops.

We call this attack “CDN Dam Flooding” because it
involves two phases analogous to the filling and flooding of
a dam. Figure 6 shows how the attack works. In the filling
phase, the attacker launches a number of forwarding loops
via the strategies described in Section III-C or Section III-D,
using domain names as forwarding destinations. In the flooding
phase, the attacker changes the resolution of these names to
direct the forwarding destinations to a server of the attacker’s
that replies to incoming requests with a large file transmitted
using HTTP streaming. For each forwarding loop, a streaming
response flows along the CDN nodes in reverse order, for
multiple rounds, until reaching a broken connection caused
by a forwarding timeout at some CDN node, or the client

10
+—e Traffic generated by all three requests
|| == Traffic generated by the first two requests
1074 Traffic generated by the first request
» 10°
2
>
S
10"
10° eI RIII I I X)
10*
0 10 20 30 40 50 60 70
Seconds
Fig. 7. Traffic generated by three forwarding loops in a “dam flooding”

attack. The flooding event occurs at 50 seconds).

that initiated the loop. While the filling phase itself generates
some attacking traffic, the flooding phase bursts the traffic by
utilizing HTTP streaming with large and continuous chunks,
with the impact of each chunk magnified by the number of
turns it makes around the forwarding loop. The attacker can
also coordinate DNS resolution to flood all filled forwarding
loops simultaneously. The overlap of multiple streaming loops
serves to enlarge the traffic burst.

We note that dynamically changing forwarding destinations
using DNS is not a necessary condition to create streaming
loops. For instance, in the example given in Section II-C,
instead of chaining the attacking account A, back to A;, the
attacker can alter the entry for A, to point to their server, so
that a request becomes forwarded to his server after n hops
between CDN nodes, with a streaming response then fed back
along the flow in reverse. That said, using DNS provides the
attacker with more control on how and when to “flood” the
filled loops.

Experiments. To assess the efficacy of this attack in
practice without unduly stressing a production CDN, we set up
our own VPS as the victim CDN node, imposing a strict traffic
limitation of no more than 100Mb/s. On CDN77, we configure
the forwarding destination to a domain under our control. On
our VPS, we configure the forwarding destination to a CDN77
IP address. In this way, we create a forwarding loop between
our VPS and the CDN77 node. Note that our VPS has the
abort-forwarding feature, does not support request streaming,
but does support response streaming.

In the filling phase, we respond to DNS queries with the
IP address of our VPS and then send a single 366-byte request
to the CDN77 node 3 times spaced 10 seconds apart. Thus,
the attack uses a total of three small initial requests. We then
wait for the three requests to loop between the CDN77 node
and our CDN node for 30 seconds.

In the flooding phase, we change the DNS replies to direct
the three loops to our web server. Our server replies to any
request with a 1 MB file, sent using HTTP streaming.

Figure 7 shows the HTTP traffic on our VPS during the
filling and flooding phases. The burst attack lasts in total for
about 69 seconds. During the first phase, the three forwarding
loops slowly increase the traffic volume from zero to 7 KB/s
over 50 seconds. In the second phase, the traffic volume
immediately peaks, reaching about 9.2MB/s. While we as the

attacker sent out three requests and three responses totaling
about 3MB traffic, our VPS as a victim received about 224MB,
an amplification factor of 74.

Combining with gzip bombs. This attack can be substan-
tially enhanced if the attacker incorporates gzip bombs. In
step 7 of Figure 6, the attacker needs to send a large response
to the CDN as quickly as possible to increase the peak burst
of the attack. gzip bombs, which are small compressed files
easy to transport across a network, can help a great deal to
achieve this goal. When unpacked by a CDN, they balloon
into extremely large output.

A key factor of this attack is whether CDNs will de-
compress gzip’d responses. To assess this, we conducted a
measurement of the 16 commercial CDNs. First, our client sent
a request to the CDN indicating that it does not accept gzip-
encoded HTTP replies. Next, our original server returned a
gzip’d response. If the client receives decompressed content,
this means that the CDN will decompress gzip’d responses.
We found that 3 (Akamai, Baidu and CloudFlare) out of the
16 CDNs will decompress gzip’d responses for clients that
do not support “gzip” encoding.

Although only 3 CDNs can be exploited by gzip bombs,
we emphasize that adding one gz ip-decompressing node into
a loop suffices to attack all involved nodes with the effect of
gzip bombs, even if the other nodes do not support gzip
decompression. For example, in the scenario of Figure 6, even
if the three nodes A, B, C do not support gzip decompres-
sion, the attacker can direct step 6 to a gzip-decompressing
node, which forwards the request to the attack server and is
fed a gzip bomb in return. The gzip-decompressing node
then forwards the large unpacked response to node A, where
it further loops among the three nodes.

To estimate the maximum amplification factor a gzip
bomb can provide, we performed a simple local experiment.
We first use dd to generate a 100GB file containing only
the character "1’. We then compressed it using gzip with
compression level 9, yielding a 96.2MB file, reflecting a
compression ratio of 1,064. The compression ratio serves as
an extra amplification factor (in addition to the number of
times that the response loops) to significantly enlarge the attack
traffic.

With Baidu’s permission, we used the Baidu CDN to
conduct two experiments to verify the feasibility and the
efficacy of dam flooding attacks with gzip bombs. We set
up two local CDN servers using Nginx; created a forwarding
loop between them; and set their network latency to 200 ms.
In the filling phase, we sent a single GET request into the
loop. After 10 seconds, we pointed the forwarding destination
to our web server, sited behind Baidu. In the first experiment,
our server replied to the request with a uncompressed 1MB file
consisting of a single repeated character. We then repeated the
procedure with a 1KB file reflecting a gzip’d version of the
previous 1MB file.

In the first experiment, the 1MB response looped 16 times,
with the traffic received at one local server totaling 16.6MB,
an amplification factor of approximately 17. In comparison, in
the second experiment the 1KB response looped 17 times, and
at one server induced a total traffic volume of 17.7MB. This

10

200

150

100| v

Requests number

50

40 60 80 140 160

Fig. 8. Traffic generated by one request due to CloudFront’s retransmission.

results in an amplification factor of approximately 17,000—
1,000 times that of the first experiment.

FE. Other CDN Quirks

We also observed two rare behaviors that can further
enhance the efficacy of forwarding-loop attacks.

Aggressive active probing. We found that Azure (China)
proactively and frequently issues HTTP requests to forwarding
destinations, presumably for availability testing. We configured
a forwarding destination on Azure (China) and monitored
for 36 hours. In total we received 106,764 requests from
69 different IP addresses. This behavior—if intended rather
than a bug or misconfiguration—would allow attackers to
generate forwarding loops without even using an initiator.

Forwarding retries. We also found that when the origin
does not give a response in certain time, CloudFront and
Akamai will retransmit requests to the origin websites. Upon
receiving a request from a client, a CloudFront server forwards
the request to its forwarding destination. If it does not receive
a response, the server then retransmits the request twice,
30 seconds and 60 seconds after first sending it, respectively,
before returning a timeout error to the client after 90 seconds.
Akamai servers also retry one time at 120 seconds before
a final timeout at 240 seconds. In forwarding-loop attacks,
each request retransmission kicks off a new loop. In addition,
even if the server closes the previous forwarding connection
before issuing a retransmission, the original loop will still
continue if any node in the loop does not implement abort
forwarding. Together, these behaviors can make the number
of loops increase exponentially.

To examine these possibilities, we created a forwarding
loop between a CloudFront server and our HTTP forwarder.
Our forwarder did not support abort forwarding or request
streaming. We sent a single request (376 bytes) to the Cloud-
Front server and captured HTTP traffic at our forwarder. After
156 seconds, we manually stopped the loop by killing the
process of our forwarder, to avoid adversely affecting the
CloudFront platform. Figure 8 shows the results. We see that
the number of requests starts to increase at 30 seconds and
does so much quickly every subsequent 30 seconds, reaching
200 at the end of the experiment. During the experiment,
our forwarder received a total of 3,096 requests sent by the
CloudFront server, even though we only sent one request.

TABLE VIIL CDN REGISTRATION REQUIREMENTS AND COST.

’ ‘ Register Requirements Price ‘ Anonymity ‘

Akamai Email address Free trial v
Credit card
Email address
Alibaba Phone number Free trial v
Bank card
Azure Email address Free trial Y
(China) Phone number (1 CNY)
Baidu Email address Free service v
CDN77 Email address Free trial v
CDNlion Email address Free trial v
CDN.net Email address Free trial v
CDNsun Email address Free trial v
CloudFlare Email address Free service v
CloudFront Bmail address Free trial v
Credit card
Fastly Email address Free service v
Incapsula Email address Free service v
KeyCDN Email address Free trial v
Level3 Email address Free trial v
MaxCDN Email address Free trial v
Email address
Tencent Phone number Free trial v
Bank card

G. Anonymity and Cost

One may argue that these attacks cannot be launched in the
real world because of the associated costs and risk of exposing
the attacker’s identity. However, CDN providers, presumably
for competitive reasons, provide much convenience for their
prospective customers (and thus for attackers). Table VIII
shows the registration information required to begin using the
free or free-trial services of the CDN providers in our study.
11 out of 16 CDNs require only a valid email address. Akamai
and CloudFront CDNs require valid credit cards (could be gift
cards, or stolen), Azure (China) requires valid phone number
(could be anonymous). Alibaba and Tencent require users to
verify their identity through a valid bank card, which takes an
attacker more effort to keep anonymous.

H. Disclosure and Response

We attempted to contact all 16 CDN vendors. For 4 CDNs
(CDNlion, CDN.net, CDNsun and KeyCDN), we could not
find specific security contacts, and our messages to the general
email addresses found on their websites or WHOIS informa-
tion did not receive any reply. For the other 12 CDNs, we were
able to provide detailed report to their security contacts, and
9 replied (all but Incapsula, Level3 and MaxCDN). In addition,
Verizon (EdgeCast) contacted us to discuss the problem after

11

learning of this issue from one of their clients, even though
we did not include their service in our study because they
do not offer anonymous customer accounts. We also reported
the problem to CNCERT/CC and the CERT coordination
center (CERT/CC) through the HackerOne platform.> Below
we summarize the discussions.

CloudFlare: acknowledged our report and particularly
thanked us for reporting the problem of gzip bombs. They
also actively discussed with us the potential consequences and
possible defenses, and suggested that we report the problem
to CERT/CC for coordinated disclosure.

Baidu: was interested in the attacks and had an in-depth
discussions with us about the specifics. In particular, they
stated that they have seen a few real-world cases of forwarding-
loop attacks, which led them to add a self-defined loop detec-
tion header.> However, they did not foresee that interactions
among CDNs could re-enable this attack.

Alibaba: discussed with us about the details of the attacks
and their potential consequences. They chose monitoring and
rate-limiting to mitigate the problem.

Tencent: evaluated the problem as a high-risk vulnerability.
They stated that they view it as indeed a problem for the
CDN industry, and they would internally assess how to defend
against it. They thanked us for our report and provided a reward
of =~ $300.

Fastly: acknowledged and discussed our report with us.
They stated that both no-abort-forwarding and HTTP Stream-
ing provide desirable performance properties, allowing them
to optimize customer traffic. To defend against inter-CDN
loops, they suggest that a unified, standard loop-detection
header holds the most promise, and are evaluating how to
best contribute to such an effort. In the mean-time, they are
also evaluating how to improve their existing loop-detection
mechanisms, given the knowledge of other CDN practices.
They thanked us and offered several T-shirts as a token of
gratitude.

CDN77: thanked us for our report and informed us that
they will change their system to not reset Via. They also said
that no-abort-forwarding is an important performance feature
for their CDN, so they are inclined to keep it. To defend against
forwarding loops, they are considering implementing a con-
straint on forwarding destinations to mitigate intra-CDN loops.
They are also willing to cooperate with other CDN providers
to define a unified loop-detection header for mitigating inter-
CDN loops.

Akamai, Azure (China) and CloudFront: acknowledged
our report, but provided no further comment to date.

Verizon (EdgeCast): stated that this problem is valid and
can be a great danger to CDNs and the Internet in general.
They are also interested in working with other CDNs to define
a unified loop-detection header.

IV. POSSIBLE DEFENSES AND MITIGATIONS

Unifying and standardizing loop-detection header. As
we have presented, forwarding-loop attacks within one CDN

2http://hackerone.com/cert
3This happened before Baidu’s partnering with CloudFlare.

can be completely defeated with loop-detection headers, a
simple and clean solution. However, even if all CDNs adopt
loop detection headers, the issue of forwarding loops across
CDNs will remain if any CDN unintentionally provide ways
for attackers to strip the loop-detection headers of other CDNSs.

We therefore suggest that CDNs should agree upon a
unified loop-detection header, and prohibit disruptive opera-
tions on it. A possible candidate would be the Via header,
which the current standard already requires nodes to add when
forwarding/proxying HTTP requests [8]. The standard also
states that proxies “SHOULD NOT” tamper with entries in
the Via header set by different organizations.

A number of the CDN vendors with whom we discussed
the attacks view this approach as the most desirable solution,
and agreed that all CDNs should comply with the standard
and not disrupt the Via header. CloudFlare is implementing a
loop-detection mechanism using Via.

While this approach is conceptually simple, it needs con-
siderable coordination efforts to be implemented and enforced.
It also requires ongoing compliance testing to ensure prompt
detection of gaps in deployment. In that light, CDNs should
also consider immediately adoptable mitigations, as follows.

Obfuscating self-defined loop-detection headers. A light-
weight mitigation is to implement a self-defined loop detection
header in a way that resists stripping by “bad actors” (attackers
setting up particular forwarding paths or rules). One approach
would be to obfuscate the header by generating its name via
encrypting a mix of a certain keyword and a random nonce,
which is verifiable by decrypting and validating the presence
of the keyword.

Such headers will resist stripping by regular-expression like
WAF rules because the attacker will not know how to specify
the header’s name. We have implemented this mitigation based
on Nginx 1.8.0. However, it will not help if a CDN provides
whitelist-based WAF rules (only propagate headers that match
a specified set).

Monitoring and rate-limiting. Another mitigation CDNs
could implement is some form of rate-limiting. For example, a
CDN could monitor traffic volume or concurrent connections
per source IP address or per customer, rejecting or downgrad-
ing subsequent requests from the same source/customer once
their activities exceed pre-defined threshold. In particular, a
gracefully downgrading approach that differentiates requests
forming forwarding loops and those of legitimate clients is to
respond to potentially problematic requests with a 302 inform-
ing the initiator to try again later. While a normal client will
usually follow the redirection automatically, measurements
of our implementation confirm that this approach suffices
to terminate forwarding loops because all CDNs we tested
merely relay the 302 response back, rather than following the
redirection.

CloudFlare informed us that they have implemented a
limit on concurrent connections per source IP address, and
a performance downgrade similar to the returning-with-302
strategy once the source exceeds the threshold. However, they
expressed concerns with the “greylisting” vulnerability that
this strategy introduces: attackers triggering the threshold on
IP addresses of one CDN to affect other customers chaining

12

that CDN to CloudFlare. In general, a more fine-grained policy
such as per-account rate-limiting could avoid this problem.

However, it is worth noting that any form of rate-limiting
can be evaded by sufficient planning by attackers. In the
extreme case, a forwarding-loop attack could be launched so
that attacking traffic comes from different IP addresses and
attributed to different (bogus) customer accounts. Also, the
returning-with-302 strategy will not work if the major attack-
ing traffic comes from responses using the dam-flooding attack.
Nevertheless, monitoring and rate-limiting could substantially
raise the operational overhead of forwarding-loop attacks.

Constraint on forwarding destination. Another possible
mitigation is to enforce a blacklist-like policy on forwarding
destinations. For example, a CDN can reject a request if its for-
warding destination belongs to another CDN. Such constraints
could also be implemented with finer-grained conditions. In
CloudFlare’s response to us, they mentioned not accepting
a request if it comes from a CDN and goes to another.
CDN77 also expressed interest in implementing blacklist-
based mitigations. The downside of this approach is that it
requires considerable efforts to maintain an accurate list of
CDN IP addresses. It also discourages benign customers from
chaining multiple CDNs, which has real-world utility [4].

V. RELATED WORK

CDN loop attacks and their prevention. The only mate-
rial we know of that studied the problem of forwarding loops
in CDNs is a blog post from the OpenCDN team [17]. They
mention approaches for constructing loops in CDNs that lack
loop-detection capabilities. Our work contributes further in this
regard in that we broadly explore the possibilities of such
attacks, and expand their scope via self-loops, evading loop
detection of one CDN by abusing features of other CDNs,
construction of the dam flooding attack, and comprehensive
measurement of how forwarding-loop attacks could work in
real world.

Some publications discuss detecting internal forwarding
loops inside a single CDN. Yao proposed a “Hop Counter”
HTTP header to detect forwarding loops [23]. CoralCDN pre-
vents internal loops by checking the “User-Agent” header [9].
However, these approaches do not consider that the undesired
interactions among CDNs can provide opportunities to evade
such defenses.

The Content Distribution Network Interconnection (CDNI)
working group of the IETF works on standardizing how
multiple CDNs can cooperate with each other [11], [18]. They
have considered addressing potential loops in the request-
routing process that determines the appropriate edge server
using HTTP redirection or DNS CNAMEs among multiple
CDNs [3]. However, they have yet to consider the problem
of forwarding loops, which could occur when the edge server
forwards the request to the original website. Our suggestion of
unifying and standardizing on an HTTP header for forwarding-
loop detection appears to fit within their scope.

Other CDN security issues. Prior work has examined
other types of attacks, and associated defenses, relevant to
CDNs. Triukose et al. proposed an attack that abuses the
no-abort-forwarding of Akamai and Limelight to launch DoS

attacks on their customers [22]. This behavior is also related to
the effects of forwarding-loop attacks, and our measurements
show that Akamai, among other CDNs, still uses no-abort-
forwarding, which is vulnerable to Triukose et al.’s attack, and
makes forwarding-loop attacks more effective, although Fastly
and CDN77 explained that this is intended for performance
consideration. Su et al. discussed several Akamai implemen-
tation considerations that attackers could exploit to degrade
streaming services [21]. Lesniewski-Laas et al. proposed a
solution called “SSL splitting” to protect the integrity of data
served by untrusted proxies [10]. Michalakis et al. also studied
the problem of content integrity in untrusted peer-to-peer
CDNs, and developed a system to ensure such integrity [15].
Levy et al. presented a system called “Stickler” to help website
publishers to guarantee the integrity of web content served to
end users through CDNs [12]. Liang et al. investigated the
authentication problem of deploying HTTPS in CDNs [13].

VI. CONCLUSION

We have presented how malicious customers can launch
forwarding-loop attacks against CDNs, along with a compre-
hensive study of their practicality in the real world. The key
issue is that features of one CDN may have unintentional and
undesired interactions that can disrupt another CDN’s internal
loop-prevention mechanisms. We believe that forwarding-loop
attacks could pose severe threats to CDNs’ availability, and
hope that our work will provide insight into those issues
and help CDNs fully understand them. In the short term,
we suggest that CDNs adopt one or more of the mitigation
mechanisms discussed in the paper. In the longer term, we
hope our work will motivate CDN vendors to address the root
cause of the problem, and possibly other potential problems
caused by the lack of coordination among CDNss.

Finally, at a higher level our work underscores the hazards
that can arise when a networked system provides users with
control over forwarding—particularly in a context that lacks
a single point of administrative control, and thus allows
forwarding manipulation by leveraging inconsistencies among
policies and technical mechanisms used by different network-
ing providers.

ACKNOWLEDGMENTS

We especially thank Jie Ma, Jinghui Feng, Tingting Li and
Haoting from Baidu’s CDN team for valuable discussions and
authorization to test on their CDN platform. We also gratefully
thank Nick Sullivan from CloudFlare, Daniel McCarney from
Fastly, Tomas Kvasnicka from CDN77, Amir Khakpour from
Verizon (EdgeCast), and Hanqing Wu from Alibaba for their
helpful comments. We also thank the anonymous reviewers,
and Zhou Li, Jianwei Zhuge, Kun Yang, Kun Du, Huiming
Liu, Wei Liu, and Qin Chen for suggestions and feedback.
This work was funded by Tsinghua National Laboratory for
Information Science and Technology (TNList) Academic Ex-
change Foundation, National Natural Science Foundation of
China (grant #: 61472215) and was also partially supported
by the US National Science Foundation under grant CNS-
1237265, and by generous support from Google and IBM.
Any opinions, findings, and conclusions or recommendations
expressed in this material are those of the authors and do not
necessarily reflect the views of their employers or the funding
agencies.

13

(1]

(2]

(3]

(4]

(5]

(6]

(71

(8]

(91

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

(23]

REFERENCES

Akamai, “Facts & Figures ,” http://www.akamai.com/html/about/facts_
figures.htm, 2015, [Accessed Aug. 2015].

A. Barbir, B. Cain, R. Nair, and O. Spatscheck, “Known Content
Network (CN) Request-Routing Mechanisms,” IETF RFC 3568, 2003.

T. Choi, Y. Seo, D. Kim, J. Lee, J. Koo, J. Shinn, and
K. Park, “CDNi Request Routing Redirection with Loop Preven-
tion,” http://tools.ietf.org/html/draft-choi-cdni-req-routing-redir-loop-
prevention-01, 2013, [Accessed Aug. 2015].

CloudFlare, “Content Delivery Network: We‘ve built the next-
generation CDN,” https://www.cloudflare.com/features-cdn, [Accessed
Aug. 2015].

Fastly, “Adding or modifying headers on HTTP requests and re-
sponses,” https://docs.fastly.com/guides/basic-configuration/adding-or-
modifying-headers-on-http-requests-and-responses, [Accessed Aug.
2015].

R. Fielding, M. Nottingham, and J. Reschke, “Hypertext Transfer
Protocol (HTTP/1.1): Caching,” IETF RFC 7234, 2014.

R. Fielding, J. Gettys, J. Mogul, H. Frystyk, L. Masinter, P. Leach,
and T. Berners-Lee, “Hypertext Transfer ProtocolHTTP/1.1,” IETF RFC
2616, 1999.

R. Fielding and J. Reschke, “Hypertext Transfer Protocol (HTTP/1.1):
Message Syntax and Routing,” IETF RFC 7230, 2014.

M. J. Freedman, “Experiences with CoralCDN: a five-year operational
view,” in Proceedings of the 7th USENIX Conference on Networked
Systems Design and Implementation (NSDI). USENIX Association,
2010.

C. Lesniewski-Laas and M. F. Kaashoek, “SSL Splitting: Securely
Serving Data from Untrusted Caches,” Computer Networks, vol. 48,
no. 5, pp. 763-779, 2005.

K. Leung and Y. Lee, “Content Distribution Network Interconnection
(CDNI) Requirements,” IETF RFC 7337, 2014.

A. Levy, H. Corrigan-Gibbs, and D. Boneh, “Stickler: Defending
Against Malicious CDNs in an Unmodified Browser,” in WEB 2.0
SECURITY & PRIVACY. IEEE, 2015.

J. Liang, J. Jiang, H. Duan, K. Li, T. Wan, and J. Wu, “When
HTTPS Meets CDN: A Case of Authentication in Delegated Service,”
in Proceedings of the 35th IEEE Symposium on Security and Privacy
(S&P). IEEE Computer Society, May 2014.

MaxCDN, “EdgeRules Features,” https://www.maxcdn.com/one/
tutorial/edgerules-features/, [Accessed Aug. 2015].

N. Michalakis, R. Soulé, and R. Grimm, “Ensuring Content Integrity for
Untrusted Peer-to-Peer Content Distribution Networks,” in Proceedings
of the 4th USENIX conference on Networked systems design & imple-
mentation (NSDI). USENIX Association, 2007, pp. 11-11.

M. Nottingham, “Caching POST,” https://www.mnot.net/blog/2012/09/
24/caching_POST, 2012, [Accessed Aug. 2015].

OpenCDN, “The Idea of Traffic Amplification Attacks,”
http://drops.wooyun.org/papers/679, 2013, [Accessed Aug. 2015].

L. Peterson, B. Davie, and R. van Brandenburg, “Framework for Content
Distribution Network Interconnection (CDNI),” IETF RFC 7336, 2014.

J. Roberts, “How does CloudFlare Handle HTTP Request Headers? ,”
https://support.cloudflare.com/hc/en-us/articles/200170986- How- does-
CloudFlare-handle-HTTP-Request-headers, 2015, [Accessed Aug.
2015].

A.-J. Su, D. R. Choffnes, A. Kuzmanovic, and F. E. Bustamante,
“Drafting behind akamai (travelocity-based detouring),” SIGCOMM
Comput. Commun. Rev., vol. 36, no. 4, pp. 435-446, Aug. 2006.
[Online]. Available: http://doi.acm.org/10.1145/1151659.1159962

A.-J. Su and A. Kuzmanovic, “Thinning Akamai,” in Proceedings of
the 8th ACM SIGCOMM conference on Internet measurement (IMC).
ACM, 2008, pp. 29-42.

S. Triukose, Z. Al-Qudah, and M. Rabinovich, “Content Delivery
Networks: Protection or Threat?” in Computer Security—ESORICS 2009.
Springer, 2009, pp. 371-389.

Y. Xi, “Method and Device for Defending CDN Flow Amplifica-
tion Attacks,” https://www.google.com/patents/CN103685253A?cl=en,
2013, [Accessed Aug. 2015].

