skip to main content

Potential for Antibacterial Activity of Chitosan-Polyvinyl Alcohol Membrane Loaded with Green Grass Jelly Leaf and Moringa Leaf Extract as a Wound Dressing

1Department of Chemistry, Faculty of Mathematics and Natural Sciences, IPB University, Bogor 16680, Indonesia

2Primate Research Center, IPB University, Bogor 16151, Indonesia

Received: 11 Oct 2021; Revised: 14 Mar 2022; Accepted: 25 Mar 2022; Published: 30 Apr 2022.
Open Access Copyright 2022 Jurnal Kimia Sains dan Aplikasi under http://creativecommons.org/licenses/by-sa/4.0.

Citation Format:
Cover Image
Abstract

Chitosan is a natural polymer that can be used as wound dressing material; however, it has rigid and brittle properties. A combination of chitosan and polyvinyl alcohol (PVA) is expected to allow improvement of chitosan’s mechanical properties. Green grass jelly leaf (Cyclea barbarta M.) and moringa leaf (Moringa oleifera L.) have antibacterial compounds that can be added to the chitosan-PVA composite membrane. The purpose of the research was to develop and characterize the chitosan-PVA composite membrane with the addition of green grass jelly leaf and moringa leaf extracts to enhance the antibacterial activity of the membranes that have potential as a wound dressing. Both extracts with various composition volumes (75:25, 50:50, and 25:75) were tested for antibacterial activities against S. aureus and E. coli. Chitosan-PVA composite membrane with the volume ratios of 5:5, 6:4, and 7:3 was added with extract with the highest antibacterial activity. The composites were characterized for density, water vapor permeability, tensile strength, elongation, Fourier Transform Infrared spectroscopy, and Scanning Electron Microscope. The most significant inhibition zone was shown by an extract ratio of 50:50 against S. aureus and E. coli, 13.00±1.17 mm and 7.00±0.17 mm, respectively. Composite membrane with the addition of extract had a larger inhibition zone against S. aureus (9.75±0.75 mm) and E. coli (7.50±0.65 mm) than without extract. Chitosan-PVA(5:5)+extract membrane showed excellent density and water vapor permeability compared to other membrane ratio compositions. Mechanically, the addition of extract decreased the tensile strength and elongation of the membranes; however, it still complied with the medical material standard criteria. The characterization for functional groups showed that chitosan-PVA+extract generated the N-H group peak with two wavenumbers expressed as overlapping amides with amines and protonated amines. The SEM analysis showed that the addition of extract was not distributed homogeneously on the membrane surface.

Fulltext View|Download
Keywords: antibacterial; chitosan; mechanical; polyvinyl alcohol
Funding: Institut Pertanian Bogor

Article Metrics:

  1. Payam Zahedi, Iraj Rezaeian, Seyed‐Omid Ranaei‐Siadat, Seyed‐Hassan Jafari, Pitt Supaphol, A review on wound dressings with an emphasis on electrospun nanofibrous polymeric bandages, Polymers for Advanced Technologies, 21, 2, (2010), 77-95 https://doi.org/10.1002/pat.1625
  2. Inmaculada Aranaz, Ruth Harris, Angeles Heras, Chitosan amphiphilic derivatives. Chemistry and applications, Current Organic Chemistry, 14, 3, (2010), 308-330 http://doi.org/10.2174/138527210790231919
  3. S. T. Koev, P. H. Dykstra, X. Luo, G. W. Rubloff, W. E. Bentley, G. F. Payne, R. Ghodssi, Chitosan: an integrative biomaterial for lab-on-a-chip devices, Lab on a Chip, 10, 22, (2010), 3026-3042 https://doi.org/10.1039/C0LC00047G
  4. M. S. Mohy Eldin, E. A. Soliman, A. I. Hashem, T. M. Tamer, Antibacterial activity of chitosan chemically modified with new technique, Trends in Biomaterials and Artificial Organs, 22, 3, (2008), 125-137
  5. Sunisa Panboon, Electrospinning of Poly (vinyl alcohol)/chitosan Fibers for Wound Dressing Applications, King Mongkut’s Institute of Technology North Bangkok, 2005
  6. Theresia Mutia, Rifaida Eriningsih, Penggunaan Webs Serat Alginat/Polivinil Alkohol Hasil Proses Elektrospining untuk Pembalut Luka Primer, Journal of Industrial Research (Jurnal Riset Industri), 6, 2, (2012), 21-31
  7. Darma Surbakti, Pengaruh konsentrasi polivinil alkohol (PVA) terhadap karakteristik membran kitosan-kolagen-PVA untuk aplikasi pembalut luka bakar, undergraduate thesis, Department of Chemistry, Universitas Sumatera Utara, Medan, 2015
  8. Mayang Sari, Jamaran Kaban, Zul Alfian, A novel composite membrane pectin from Cyclea Barbata Miers blend with chitosan for accelerated wound healing, Polymer Testing, 99, (2021), https://doi.org/10.1016/j.polymertesting.2021.107207
  9. Lenni Sari, Uji in vivo Plester Ekstrak Metanol Daun Kelor (Moringa oleifera) dan Uji Aktivitas Antibakteri Terhadap Staphylococcus aureus, undergraduate thesis, Department of Chemistry, Universitas Sumatera Utara, Medan, 2019
  10. Arifan Asmardi, Rodesia Mustika Roza, Fitmawati Fitmawati, Aktivitas Antibakteri Ekstrak Daun Cyclea Barbata (L.) Miers. Terhadap Bakteri Escherichia Coli dan Salmonella Typhi, Jurnal Online Mahasiswa FMIPA, 1, 2, (2014)
  11. Riska Aksara, Weny J. A. Musa, La Alio, Identifikasi Senyawa Alkaloid Dari Ekstrak Metanol Kulit Batang, Jurnal Entropi, 8, 1, (2013), 514-519
  12. Nurul Nina Widya Wardani, Pengaruh Ekstrak Daun Cincau Hijau (Cyclea barbata L. Miers) terhadap Kesembuhan Luka Insisi Pada Mencit, Undergraduate thesis, Kedokteran Hewan, Universitas Airlangga, Surabaya, 2015
  13. Marcela Vergara-Jimenez, Manal Mused Almatrafi, Maria Luz Fernandez, Bioactive components in Moringa oleifera leaves protect against chronic disease, Antioxidants, 6, 4, (2017), https://doi.org/10.3390/antiox6040091
  14. Dorothea H. P. Shailemo, Habauka M. Kwaambwa, Martha Kandawa-Schulz, Titus A. M. Msagati, Antibacterial activity of Moringa ovalifolia and Moringa oleifera methanol, N-hexane and water seeds and bark extracts against pathogens that are implicated in water borne diseases, Green and Sustainable Chemistry, 6, 2, (2016), 71 http://doi.org/10.4236/gsc.2016.62006
  15. Wahyudi Wahyudi, Hanna Agustina, Sediaan Salep Ekstrak Daun Kelor (Moringa oleifera Lam) sebagai Penyembuhan Luka Bakar Topikal pada Kelinci (Oryctolagus Cuniculus), Jurnal Farmasimed (JFM), 1, 1, (2018), 21-24
  16. Egbuna Chukwuebuka, Moringa oleifera “the mother’s best friend”, International Journal of Nutrition and Food Sciences, 4, 6, (2015), 624-630 http://doi.org/10.11648/j.ijnfs.20150406.14
  17. Jeffrey Barry Harborne, Metode fitokimia, Bandung: Penerbit ITB, 102, (1987), 111-147
  18. Patrícia Battaglini Franco, Leiliane Aparecida de Almeida, Rodrigo Fernando Costa Marques, Gunther Brucha, Maria Gabriela Nogueira Campos, Evaluation of antibacterial activity of chitosan membranes associated to unripe banana peel, Materials Science Forum, 2016 https://doi.org/10.4028/www.scientific.net/MSF.869.859
  19. Siti Nur Oktavia, Endang Wahyuningsih, Sholikhah Deti Andasari, Skrining Fitokimia Dari Infusa Dan Ekstrak Etanol 70% Daun Cincau Hijau (Cyclea barbata Miers), CERATA Jurnal Ilmu Farmasi, 11, 1, (2020), 1-6
  20. Naelaz Zukhruf Wakhidatul Kiromah, D. K. Ika Trisharyanti, M. Farm, Aktivitas Antibakteri Kombinasi Minyak Atsiri Kemangi (Ocimum basilicum) Dengan Kloramfenikol atau Gentamisin Terhadap Salmonella typhi, undergraduate thesis, Fakultas Farmasi, Universitas Muhammadiyah Surakarta, Surakarta, 2014
  21. W. W. Davis, T. R. Stout, Disc plate method of microbiological antibiotic assay: II. Novel procedure offering improved accuracy, Applied and Environmental Microbiology, 22, 4, (1971), 666-670 https://doi.org/10.1128/am.22.4.666-670.1971
  22. M. Zakariya, I. Sudiana, E. D. Wahyuni, Efektifitas perawatan luka insisi dengan madu dan Povidon iodin 10%, Jurnal Ners, 4, 1, (2009), 1-8
  23. Cindy Pan, Homa Rezaei, Amandeep Soor, Chitosan disrupts membrane permeability of lactic acid bacteria, Journal of Experimental Microbiology and Immunology (JEMI), 15, (2011), 7-14
  24. Ming Kong, Xi Guang Chen, Ke Xing, Hyun Jin Park, Antimicrobial properties of chitosan and mode of action: a state of the art review, International Journal of Food Microbiology, 144, 1, (2010), 51-63 https://doi.org/10.1016/j.ijfoodmicro.2010.09.012
  25. Geo F. Brooks, Janet S. Butel, Stephen A. Morse, Nani Widorini, Dripa Sjabana, Jawetz, Melnick, & Adelberg's Mikrobiologi Kedokteran, 22 ed., Salemba Medika, 2017
  26. Tetty Kemala, M. Syaeful Fahmi, Suminar S. Achmadi, Pembuatan dan Pencirian Polipaduan Polistiren-Pati, Jurnal Sains Materi Indonesia, 12, 1, (2010), 30-35
  27. Ubonrat Siripatrawan, Bruce R. Harte, Physical properties and antioxidant activity of an active film from chitosan incorporated with green tea extract, Food Hydrocolloids, 24, 8, (2010), 770-775 https://doi.org/10.1016/j.foodhyd.2010.04.003
  28. Patricia Cazón, Gonzalo Velázquez, Manuel Vázquez, Characterization of bacterial cellulose films combined with chitosan and polyvinyl alcohol: Evaluation of mechanical and barrier properties, Carbohydrate Polymers, 216, (2019), 72-85 https://doi.org/10.1016/j.carbpol.2019.03.093
  29. Liska Triyastiti, Didik Krisdiyanto, Isolasi Nanoselulosa Dari Pelepah Pohon Salak Sebagai Filler Pada Film Berbasis Polivinil Alkohol (PVA), Indonesian Journal of Materials Chemistry, 1, 1, (2018)
  30. Meilanny D.K.P., Pranjono B.E., Dyah Hikmawati, Metode elektrospining untuk mensintesis komposit berbasis alginat-polivinil alkohol dengan penambahan lendir bekicot (Achatina fulica), Prosiding Pertemuan dan Presentasi Ilmiah Teknologi Akselerator dan Aplikasinya, 17, (2015), 65-71
  31. Edward J. Dompeipen, Isolasi dan identifikasi kitin dan kitosan dari kulit udang Windu (Penaeus monodon) dengan spektroskopi inframerah, Majalah Biam, 13, 1, (2017), 31-41
  32. Yingshan Zhou, Dongzhi Yang, Xiangmei Chen, Qiang Xu, Fengmin Lu, Jun Nie, Electrospun water-soluble carboxyethyl chitosan/poly (vinyl alcohol) nanofibrous membrane as potential wound dressing for skin regeneration, Biomacromolecules, 9, 1, (2008), 349-354 https://doi.org/10.1021/bm7009015

Last update:

No citation recorded.

Last update: 2024-04-25 09:52:02

No citation recorded.