DOI QR코드

DOI QR Code

A Study on Developing and Validating the Modern Physics Conceptual Diagnostic Survey for Pre-Service Physics Teachers based on the 2015 Revised National Science Curriculum

2015 개정 과학과 교육과정에 기초한 예비 물리교사를 위한 현대물리 개념 진단지 개발 및 타당화 연구

  • Received : 2020.03.16
  • Accepted : 2020.06.01
  • Published : 2020.06.30

Abstract

This study aims to develop items to diagnose pre-service physics teachers' understanding of the conceptual knowledge of modern physics, based on the achievement criteria presented in the 2015 revised national science curriculum, and to identify the validity and reliability of the newly developed items. Data were collected from 467 pre-service physics teachers in the Physical Education Department or Science Education Department (Physics Education Major) of 15 universities across the nation. In this study the content validity, substantive validity, the internal structure validity, generalization validity, and the external validity proposed by Messick (1995) were examined by various statistical tests. The results of the MNSQ analysis showed that there was no nonconformity in the 23 items. The internal structure validity was confirmed by the standardized residual variance analysis, which shows that the 22 items was unidimensional. The generalization validity was confirmed by differential item functioning (DIF) analysis about groups lectured or not modern physics/quantum mechanics. In addition, item analysis and test analysis based on classical test theory were performed. The mean item difficulty is 0.66, mean item discrimination is 0.47 and mean point biserial coefficient obtained was 0.41. These results for item parameters satisfied the criteria respectively. The reliability of the internal consistency of the KR-20 is 0.77 and the Ferguson's delta obtained was δ = 0.972. By Rasch model analysis, the item difficulty (item measures) was discussed.

본 연구는 2015 개정 과학과 교육과정에 제시된 성취기준에 기초하여 현대물리 개념지식에 대한 예비 물리교사의 이해를 진단할 수 있는 개념 진단지를 개발하고 타당도와 신뢰도를 확인하였다. Messick(1995)의 분류에 따른 5가지 타당도 중 검사내용에 기초한 타당도는 일련의 전문가 내용타당도 검사로 진행하여 확인한 후 24문항의 설문용 현대물리 개념 진단지를 구성하였다. 국내 15개 사범대학의 467명의 예비 물리교사에게 개발된 현대물리 개념 진단지를 적용하여 문항의 신뢰도와 Messick(1995)의 나머지 4가지 타당도를 확인하였다. 실제에 기초한 타당도는 Rasch 모형이 적용된 통계분석방법으로 문항적합도(MNSQ)를 확인한 결과, 23문항이 적합한 수준으로 나타났다. 이중 오타가 발생한 문항을 제외한 22문항에 대하여 내적구조에 기초한 타당도 분석을 하여 개발된 현대물리 개념 진단지의 일차원성을 확인하였다. 일반화에 기초한 타당도 확인 결과에 따르면 개발된 개념 진단지가 집단특성에 대해 독립적이라고 판단된다. 양자역학 수강 여부에 따른 검사점수의 t-검증 결과, 유의미한 차이가 나타났으며, 이를 외적준거에 기초한 타당도 확인으로 활용하였다. Cronbach alpha 및 Rasch 모형 분석에서의 피험자 신뢰도와 문항신뢰도 값은 검사자료가 적합한 수준의 신뢰도를 갖는다는 보여주었다. 또한 고전검사이론에 의한 문항분석 결과, 양호한 문항난이도를 보여주었으며 문항변별도는 두 문항이 준거값을 벗어났으나 다른 나머지 문항들은 양호한 값을 보여주었다. 양류상관계수는 한 문항을 제외한 나머지에 대해서 양호한 값을 나타내었다. KR-20과 Ferguson's delta 값 역시 검사지가 양호하다는 것을 보여주었다. 마지막으로 문항반응 이론에 의한 문항난이도(추정치)를 Rasch 모형 분석으로 추정하였으며, 이 값들은 피험자 집단 특성에 영향을 받지 않을 것으로 판단된다.

Keywords

References

  1. Aslanides, J. S., & Savage, C. M. (2013). Relativity concept inventory: development, analysis, and results. Physical Review Special Topics-Physics Education Research, 9(1), 010118-1-010118-10. https://doi.org/10.1103/PhysRevSTPER.9.010118
  2. Boone, W. J., Staver, J. R., & Yale, M. S. (2014). Rasch analysis in the human science. New York, NY: Springer.
  3. Cataloglu, E., & Robinett, R. W. (2002). Testing the development of student conceptual and visualization understanding in quantum mechanics through the undergraduate career. American Journal of Physics, 70(3), 238-251. https://doi.org/10.1119/1.1405509
  4. Chung, K. (2006). Web application in university physics education -focused on modern physics subjects-. Physics and High Technology, 15(12), 48-52.
  5. Ding, L., Chabay, R., Sherwood, B., & Beichner, R. (2006). Evaluating an electricity and magnetism assessment tool: brief electricity and magnetism assessment. Physical Review Special Topics-Physics Education Research, 2(1), 010105-1-010105-7. https://doi.org/10.1103/PhysRevSTPER.2.010105
  6. Ding, L., & Beichner, R. (2009). Approaches to data analysis of multiple-choice questions. Physical Review Special Topics-Physics Education Research, 5(2), 020103-1-020103-17. https://doi.org/10.1103/PhysRevSTPER.5.020103
  7. Falk, J. (2004). Developing a quantum mechanics concept inventory (Master's thesis). Uppsala University, Sweden.
  8. Ha, M., Park, H., Kim, Y., Kang, N., Oh, P., Kim, M., Min, J., Lee, Y., Han, H., Kim, M., Ko, S., Son, M. (2018). Developing and applying the questionnaire to measure science core competencies based on the 2015 revised national science curriculum. Journal of the Korean Association for Science Education, 38(4), 495-504. https://doi.org/10.14697/JKASE.2018.38.4.495
  9. Hewitt, P. G. (2009). Conceptual physics. Upper Saddle River, NJ: Pearson.
  10. Im, S., & Kim, J. (2012). An investigation on university students' conceptual understanding of introductory quantum physics. New Physics: Sae Mulli, 62(2), 135-141. https://doi.org/10.3938/NPSM.62.135
  11. Im, S., & Kim, J. (2014). Comparison of pre-service physics teachers' conceptual understanding of classical and quantum mechanics. New Physics: Sae Mulli, 64(1), 56-65. https://doi.org/10.3938/NPSM.64.56
  12. Jho, H., Ji, Y., Choi, W., & Song, J. (2016). Analysis of undergraduate students' understanding of the relativity of simultaneity. New Physics: Sae Mulli, 66(5), 571-579. https://doi.org/10.3938/NPSM.66.571
  13. Kim, C. (2006). Modern physics lecture as liberal arts. Physics and High Technology, 15(11), 25-28.
  14. Kim, S. (2012). Education for relativity in the new national curriculum. Physics and High Technology, 21(3), 5-7. https://doi.org/10.3938/PhiT.21.008
  15. Ko, Y., Lee, H., & Kim, S. (2015). Gender differences of physics major college students' conceptual understanding and its degree of certainty in the subject of quantum mechanics, New Physics: Sae Mulli, 65(8), 812-824. https://doi.org/10.3938/NPSM.65.812
  16. Korea Institute for Curriculum and Education (2008). A study on the developing of physics teachers' qualification criteria, detailing the evaluation areas, and evaluating of instructional ability-for 2009 secondary teachers' candidate selection test. Research report CRE 2008-6-4.
  17. McKagan, S. B., Perkins, K. K., & Wieman, C. E. (2010). Design and validation of the quantum mechanics conceptual survey. Physical Review Special Topics-Physics Education Research, 6(2), 020121-1-020121-17. https://doi.org/10.1103/PhysRevSTPER.6.020121
  18. Messick, S. (1995). Standards of validity and the validity of standards in performance assessment. Educational Measurement: Issues and Practice, 14(4), 5-8. https://doi.org/10.1111/j.1745-3992.1995.tb00881.x
  19. Ministry of Education (2015). 2015 revised national science curriculum. Sejong: Ministry of Education
  20. Ministry of Education & Human Resources Development (2006). Ways to improve the teacher training system to enhance school education. Seoul: Ministry of Education & Human Resources Development
  21. Ministry of Education & Human Resources Development (2007). 2009 revised national science curriculum. Seoul: Ministry of Education & Human Resources Development
  22. Park, J. & Kim, Y. (2018). New general introduction of physics education. Seoul: Bookshill.
  23. Seol, H. (2007). Validation on developing a university lecture evaluation tool through the application of Rasch measurement model from the perspective of Messick's validity. Journal of Educational Evaluation, 20(4), 31-51.
  24. Seong, T. (2014). Theory and practice of item production and analysis. Seoul: Hakjisa.
  25. Seong, T. (2016). Understanding and Application of the Item Response Theory (2nd ed.). Paju: Kyoyookbook.
  26. Song, J., Kim, I., Kim, Y., Kwon, S. Oh, W., & Park, J. (2004). Student' physics misconception map. Seoul: Bookshill.
  27. Wuttiprom, S., Sharma, M. D., Johnston, I. D., Chitaree, R., & Soankwan, C. (2009). Development and use of a conceptual survey in introductory Quantum Physics. International Journal of Science Education, 31(5), 631-654. https://doi.org/10.1080/09500690701747226