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Abstract. Data and information are nowadays frequently available in
multiple modalities like different sensor signals, textual descriptions, graph
structures, and other formats. The maximum information from these het-
erogeneous representations can be obtained by fusing the various modal-
ities by specific embeddings or proximity measures. Current approaches
are widely limited in the fusion model and the applied measures, espe-
cially when the given data is non-vectorial. We propose a model to learn
the spectral properties of the different inner product representations in a
joined optimization problem. The approach is evaluated on various multi-
modal data and compared to modern multiple-kernel learning and baseline
techniques.

1 Introduction

Modern data analysis has become increasingly challenging and the expectations
on machine learning models are higher than ever: These days, data is no longer
given in just a single format, but rather simultaneously in multiple different
formats that are not always in vectorial form [2]. For both, vectorial and non-
vectorial input data, kernel methods have proven to be highly efficient and robust
[16, 3]. Due to its great results in multi-modal data analysis, so-called Multiple
Kernel Learning (MKL) has become very popular [1]. Despite their impressive
results, MKL methods are still widely limited by mathematical constraints of
the models, such as the kernel function’s positive definiteness (pd).

Here, we present a technique that exploits the spectral properties of multiple
kernels to learn a new representation of the data as a single information-rich
kernel over multiple modalities. We recap main concepts of Multiple Kernel
Learning and the particularities of non-positive semi-definite (non-psd) kernel
functions. Subsequently, we outline our novel approach of kernel fusion and eval-
uate our approach on a variety of benchmark data sets from the MKL domain.
We conclude with a detailed discussion of the results and an outlook on further
research.
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for the invaluable discussions about this research topic during a fantastic boating trip.

103

ESANN 2022 proceedings, European Symposium on Artificial Neural Networks, Computational  Intelligence and 
Machine Learning.  Bruges (Belgium) and online event, 5-7 October 2022, i6doc.com publ., ISBN 978287587084-1. 
Available from http://www.i6doc.com/en/.  



2 Learning from multiple indefinite kernel functions

In machine learning, information is now often spread across different heteroge-
neous formats and classical techniques are insufficient [17, 12]. Frequently, deep
learning and embedding techniques can be employed to generate vectorial rep-
resentations, but they require huge amounts of training data, dedicated deep
learning models and have extensive computational costs [17]. Multiple represen-
tations can also be addressed by MKL models, where each kernel was derived by
a different similarity measure or from different input sources (text, video, audio
data, or other) [1]. MKL aims to use various base kernel functions and capture
their most important information in order to obtain one single information-rich
kernel. The most prominent MKL techniques are SimpleMKL [14] and EasyMKL
[1] which learn the weights of a convex combination of kernels. The underlying
kernel functions are often expected to be Mercer kernels and need well-chosen
meta-parameters to ensure convexity and convergence guarantees of the kernel
consuming machine learning methods [9]. In general, non-psd kernels arise much
more frequently than typically assumed and can already occur due to normal-
ization procedures or careless parameter settings [5]. Several correction and
adjustment procedures were proposed (eigenspectrum correction, proxy matrix
learning or dedicated models for indefinite kernels) [15]. We consider a finite
collection of objects X “ txiu, i “ 1, . . . , N in some (implicit) input space X
and one or multiple similarity functions kmpxi,xjq “ xxi,xjy with m “ 1, . . . ,M
to compare the input data objects. The x¨, ¨y can be any symmetric similarity
function. In case of Mercer kernels this could be the Euclidean inner product or
other types of kernels, but also domain-specific non-psd similarities as alignment
functions for sequential data and alike [15].

A kernel matrix Km P RNˆN is obtained for each similarity function by
evaluating all pairwise similarities on X. In order to modify Km to become psd
(we denote K̃m as the modified psd-version ofKm), the eigenspectrum ofKm can
be adapted. This is achieved by an eigendecomposition Km “ QmΛmQT

m, with
Λm containing the eigenvalues andQm the corresponding eigenvectors ofKm and
modifications of Λm (like clip, flip, shift, square) to ensure that λ̃m “ Λ̃mriis ě 0

for i “ 1, . . . , N , which eventually results in a positive semi-definite K̃m “

QmΛ̃mQT
m [15]. Instead of modifying the eigenspectrum of Km directly, the

authors in [10] proposed to learn a psd proxy matrix with maximum alignment
to Km. In general this leads to a clip strategy, where all negative eigenvalues are
removed (see also [15, 11]). By now, only very few MKL approaches addressed
indefinite kernels. The authors in [6] suggested a primal formulation following a
SimpleMKL style, but without requiring psd constraints. The model provides a
binary classifier for multiple input kernels and is optimized by gradient descent.
However, the approach does not exploit the available information in the multiple
modalities since it sticks with an averaging strategy. The approach in [18] can
only be applied to vectorial input data, but not for general similarity measures.
In contrast to other previous work in this area, our proposed method modifies the
spectral properties of the multi-modal data in a joined adaptive MKL approach.
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3 Adaptive spectral properties for kernel fusion

Multiple Kernel Learning with non-psd matrices is challenging. We propose a
new strategy to learn one strong kernel matrix from a variety of weak - potentially
indefinite - kernels over a support vector classifier, in the following referred to
as Adaptive Subspace Kernel Fusion - Support Vector Machine (ASKF-SVM).
The dual of the support vector machine (e.g. [16]) is given as:

min
α

1

2
αTY KY α ´ 1Tα

subject to 0 ď αi ď c and
ÿ

i

yiαi “ 0, i “ 1, . . . , N ; C P R,
(1)

with yi “ t´1, 1u, Y “ ry1, . . . , yN sJ as the labels and the label vector. The
vector α contains the weights for the support vectors, C is a regularization
parameter and K a psd kernel matrix. Our optimization approach is derived
from Eq. (1), with the additional objective to learn a psd kernel K̃ over multiple
modalities or kernel functions. Again, we assume a set of M proximity functions
for pairwise comparisons of the input data yielding a collection of kernel matrices
K “ tK1, . . . ,KMu, all of them of size NˆN . To determine the relevant spectral
properties, we apply an eigen-decomposition Km “ QmΛmQT

m to obtain the
eigenvalues Λm and eigenvectors Qm for each Km. Let Λ “ tΛ1, . . . ,ΛMu be the
collection of all eigenvalues Λm for all Km and Q “ tQ1, . . . , QMu the collection
of their respective eigenvectors Qm. Now we select those N eigenvectors from
Q over all Qm whose corresponding eigenvalues have the greatest importance
over all eigenspectra, i.e. the N eigenvalues from Λ with the maximum absolute
value. We refer to this set as Q̂ and optimize the spectral properties to obtain
a discriminative and psd weighting of the eigenvectors. Therefore, we adopt
the optimization problem from Eq.(1) and extend it by some additional stress
factors and constraints:

min
α,λ̃

1

2
αTY Q̂Λ̃Q̂T

loomoon

K̃

Y α ´ 1Tα ´ β ¨ 1T Λ̃1
looomooon

R1

` γ ¨ ||Q̂ΛQ̂T ´ Q̂Λ̃Q̂T ||F
loooooooooooooomoooooooooooooon

R2

subject to 0 ď αi ď C and
ÿ

i

yiαi “ 0, i “ 1, . . . , n; c P R

λ̃i ě 0
loomoon

C1

and
ÿ

i“1

|λ̃i| ď δ ¨
ÿ

i“1

|λi|

looooooooooomooooooooooon

C2

@λi P rΛsii,

with α and λ̃ as optimization variables, 1 as vectors of ones, and β, γ and
δ as hyperparameters. Compared to Eq. (1), we replace K by a new kernel
matrix K̃ “ Q̂Λ̃Q̂T containing the eigenvalues we want to learn. Furthermore,
we introduce two additional regularization factors R1 and R2 in to the objective
as well as two more constraints C1 and C2. R1 is the sum of the new eigenvalues
and prevents the optimization solver from automatically setting all eigenvalues
to 0. R2 keeps all values of the new kernel matrix from deviating too far from
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dataset M N ι λmin λmax

FlowCyto 4 612 0.09 -19.73 152.49
PD 96 83 0.2 -169.46 173.94
NR-AR 10 8164 0.12 -4317.47 5963.99
NR-AhR 10 9357 0.12 -4883.85 6766.25
NR-ER 10 7693 0.12 -4106.23 5662.21
SR-ATAD5 10 9086 0.12 -4804.69 6627.91
SR-MMP 10 7316 0.12 -3949.7 5411.08

Table 1: Properties of the benchmark data sets - details in the text.

the values of the old kernel matrix. The impact of the two terms R1 and R2

are controlled by the scalars β and γ. The additional constraints C1 and C2

guarantee that the new eigenvalues λi are neither too small nor too large. C1 is
the guarantee for learning only new eigenvalues with λi ě 0, implying that K̃
must be psd in any case. C2 defines the upper bound for λi as the sum of all new
eigenvalues that cannot be greater than a multiple of the original eigenvalues.

The optimization yields optimized vectors α and λ to reassemble the kernel
matrix K̃ “ Q̂Λ̃Q̂T and to derive the decision function.

4 Experiments

In this section, we evaluate the performance of our approach against established
methods on a variety of benchmark data sets for Multiple Kernel Learning tasks.

4.1 Datasets

Benchmark data and their spectral properties are detailed in Table 1. All data
sets used in our experimental setup include M similarity matrices of size N ˆN
according to the applied similarity or kernel functions.1 The degree of indefinite-
ness is quantified by ι, where ι “ 0 indicates a psd matrix and ι “ 1 a negative
semi-definite matrix. The FlowCyto data set2 is based on 612 FL3-A DNA
flow cytometer histograms from breast cancer tissues in 256 resolution, divided
into two classes for our binary classification setup.3 The Presence Detec-
tion (PD) data set2 analyzes the occupancy of lecture halls based on multiple
wireless Bluetooth Low Energy signals [12]. The Tox21 challenge4 was the
computational analysis about toxic effects of substances on body regions such as
stress response (SR) or effects on nuclear receptors (NR). We used NR-AhR,
NR-AR, NR-ER, SR-MMP out of the original 12 assays of the challenge.

1We normalized each of those matrices before the evaluation by k̂px, zq “
kpx,zq?

kpx,xq¨kpz,zq
.

2The proximity matrices are given as dissimilarities and converted to similarities by double
centering [13]: S “ ´JDJ{2 with J “ pI ´ 11J{Nq, identity matrix I and vector of ones 1.

3http://rduin.nl/prtools.html
4https://tox21.gov/overview/
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Data NN EasyMKL AverageMKL ASKF-SVM

FlowCyto 0.60 ˘ 0.07 0.73 ˘ 0.05 0.72 ˘ 0.05 0.80 ˘ 0.03
PD 0.80 ˘ 0.15 0.86 ˘ 0.12 0.82 ˘ 0.19 1.00 ˘ 0.00
NR-AR 0.95 ˘ 0.01 0.96 ˘ 0.02 0.95 ˘ 0.02 0.97 ˘ 0.01
NR-AhR 0.88 ˘ 0.01 0.89 ˘ 0.04 0.88 ˘ 0.02 0.90 ˘ 0.02
NR-ER 0.87 ˘ 0.03 0.86 ˘ 0.02 0.86 ˘ 0.02 0.87 ˘ 0.01
SR-ATAD5 0.96 ˘ 0.01 0.97 ˘ 0.01 0.97 ˘ 0.01 0.97 ˘ 0.00
SR-MMP 0.82 ˘ 0.03 0.83 ˘ 0.03 0.82 ˘ 0.01 0.84 ˘ 0.01

Table 2: Classification results on multi-modal data sets comparing ASKF-SVM
to a NN baseline classifier and other models from the MKL domain.

4.2 Evaluation & Results

In the experimental setup, we evaluate our ASKF-SVM against other baseline
classifiers and methods from the MKL domain.

Nearest neighbor (NN) is used as a baseline model. The similarity matri-
ces are evaluated individually and the respective predictions are averaged. This
approach is computationally expensive as all matrix values have to be stored
as total in RAM or recalculated for new points. Besides the baseline nearest
neighbor, there exist various advanced variants as in [4].

EasyMKL & AverageMKL are two methods from the MKL domain and
implemented in MKLpy [8]. Both models are directly combined with an SVM
classifier within the MKLpy-framework.

Adaptive Subspace Kernel Fusion-SVM (ASKF-SVM: We created
our solver based on the optimization problem of Eq. (3) using the GENO-project
framework [7] to extend the classical SVM formulation.

Experiments are done in a five-fold cross-validation with hold-out test set. We
tested and trained all classification models on the same training and test splits
and optimized the model-specific parameters via grid search. Mean accuracy
and standard deviation of classification models are shown in results table 2.

The NN classifier performed in general slightly worse than the other classifica-
tion models in the Tox21 data. Only for FlowCyto and Presence-Detection,
the performance of EasyMKL and AverageMKL as well as ASKF-SVM was
considerably superior. In general, EasyMKL and AverageMKL performed rea-
sonably well and sometimes slightly better than the baseline NN. Note that
EasyMKL and AverageMKL are valid only for psd kernels. The best results
in the benchmark are obtained by the proposed kernel fusion technique ASKF-
SVM. The ASKF-SVM formulation permits to adapt the eigenspectrum to be-
come psd, while not being limited to a clip approach. It also allows a mixture
of common correction methods to get adapted such that the classification task
can be taken into account. This flexible weighting enables the method to cre-
ate a new positive semi-definite kernel with considerable alignment to the old
multi-modal kernels and good performance. However, a current limitation of the
proposal is the computational complexity.
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5 Conclusions

In this paper, we presented Adaptive Subspace Kernel Fusion - SVM, allowing
the fusion of data from different sources or measures for binary classification.
It learns how to combine the spectral properties of several kernels in a joined
optimization problem. The proposed method performed competitive and in some
cases significantly better compared to other MKL methods. In future work, we
will extend the approach to multi-class problems and address complexity issues,
by low-rank approximation techniques [5], which are promising in first tests.
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