
Feature Compression Using Dynamic Switches

in Multi-split CNNs

Suresh Kirthi Kumaraswamy1, Alexey Ozerov1,2, Ngoc Q. K. Duong1,3,
Anne Lambert1, François Schnitzler1 and Patrick Fontaine1 ∗

1 InterDigital, Inc. - Rennes, France,
2 Ava - Paris, France, 3 Lacroix Impulse - Rennes, France.

The present work has been done while all authors were with InterDigital, Inc.

Abstract. Convolutional neural networks (CNN) are often computation-
ally demanding for mobile devices. Offloading some computation lowers
this burden: initial convolutional layers are processed on a smartphone,
the resulting high dimensional features are transmitted, and latter layers
are processed in the cloud/edge/another device. To improve this process,
we propose Dynamic Switch, a convolutional subnetwork enabling any-

where splittable CNNs with multirate feature compression using a single

set of network parameters. We achieve 90% feature compression with at
most 3% accuracy loss for MobileNet and MSDNet on ImageNet dataset
and at most 4.58% on CIFAR100 dataset with MSDNet, ResNet-18, Mo-
bileNet/MobileNetv2 and ShuffleNet/ShuffleNetv2.

1 Introduction

Convolutional Neural Networks (CNN) are increasingly deployed in constrained
environments such as mobile devices and Internet of Things (IoT) devices with
limited memory and computational resources and/or transmission bandwidth.
One possible solution to facilitate such deployments is to split the computa-
tion between devices, edge, cloud etc. [1]. A CNN can be split such that one
part of the processing takes place in the constrained device and the feature vec-
tor thus generated is transmitted for further processing in the next device or
the cloud/edge server [2]. However, the bandwidth consumed in such scenarios
might be important since the feature size at an intermediate layer can be higher
than the input data dimension [3]. It is therefore important to reduce the size
of the intermediate features for the purpose of efficient transmission to the next
device/edge/cloud. This transmission problem is generally solved by adding a
compression module for the features [4, 5, 6]. However, most approaches con-
sider a fixed location and/or a fixed compression rate, thus at inference time the
compressed features are not well-adapted to the changing communication band-
width [5] or require a different model for each deployment setting (characteristics
of each device and of the transmission network).

In this work, we present a multiple splits solution for CNN architectures
by adding a compression/expansion module at each split point and call this
module Dynamic Switch (DySw). Inspired by the Slimmable approach [7, 8],

∗This work has been supported by European Union’s Horizon 2020 research and innovation
program under grant number 951911 - AI4Media.

193

ESANN 2022 proceedings, European Symposium on Artificial Neural Networks, Computational Intelligence and
Machine Learning. Bruges (Belgium) and online event, 5-7 October 2022, i6doc.com publ., ISBN 978287587084-1.
Available from http://www.i6doc.com/en/.

... ...

mobile device cloud

tr
a
n
s
m

is
s
io

n

initial layers �nal layersDySw encoder / decoder

features

Fig. 1: Illustration of the use of DySw with N = 2 compression rates. Depend-
ing on the constraints, either some (full shapes) or all (full + dashed shapes)
compressed features are transmitted from the mobile device to the cloud.

it can realize different compression and expansion ratios using a single set of
parameters. These ratios are switchable at inference time so that the compressed
features can be adapted to the available transmission bandwidth. But unlike [7],
our purpose is not to slim the whole model but rather to compress the CNN
features. Also, a CNN may use several DySw units at difference split locations
and they can be added to a pretrained network by training only them.

Two works [9, 10] are close to our proposal. In [9], Huang et al. propose fea-
ture dimension reduction technique, referred as progressive slicing. This concept
is similar to ours wherein a method to adapt feature dimension is considered. At
a pre-specified split point, a progressive slice layer is pre-configured for different
feature dimensions. The main difference is that separate network parameters per
slice configuration are maintained unlike us where we maintain a single shared
set. In [10], Shao et al. introduce an autoencoder of six layers, three each
for encoder and decoder. Here the dimension of the features is adjusted de-
pending on the communication channel conditions and noise level. They choose
the dimensions with highest magnitudes by thresholding the chosen dimensions’
changes for each input. Unlike them, in our method retained dimensions are
fixed and pre-learnt. In addition, our autoencoder consists of just two hidden
layers, one per encoder and decoder. This results in a lightweight and more
flexible approach.

Our main contributions are: (1) We propose a multi-split CNN for distributed
inference, each with multi-rate feature compression. (2) We investigate the use of
different losses and strategies for the parameter estimation. (3) We validate the
benefit of the DySw within several popular CNN architectures on classification
task. (4) Finally, we empirically show that the DySw can be augmented to a
pretrained CNN without significant loss in accuracy.

2 Proposed Approach

Assuming here, without loss of generality, an image classification task, let’s
consider a CNN f : x → y, where x ∈ R

m×n×3, y ∈ R
c and function f maps input

194

ESANN 2022 proceedings, European Symposium on Artificial Neural Networks, Computational Intelligence and
Machine Learning. Bruges (Belgium) and online event, 5-7 October 2022, i6doc.com publ., ISBN 978287587084-1.
Available from http://www.i6doc.com/en/.

image x to output y. x is an input image with m rows, n columns, 3 channels; y
is a c-dimensional vector representing c classes, and f is parameterized by θ. Let
the DySw be g(l−1) : xl → x′

l
, where g(l−1) is inserted at the end of the (l− 1)th

layer of the CNN f and x′
l
is the output of DySw g(l−1). The DySw g(l−1) is

made up of a convolutional (conv) layer with kernel size 1× 1 that projects the
input on to a lower dimension and another conv layer of kernel size 1× 1 which
expands and re-instates the compressed feature to the dimension of the original
input x(l). A typical DySw subnetwork implementation is made up of one conv
layer, one ReLU layer and one batchnorm layer for the compression and a conv,
ReLU and a batchnorm layer for expansion.

The DySw is capable of switching among different compression expansion
rates through width selection in the conv layers. This is illustrated in Figure 1
with only 2 compression rates for clarity. The blocks in the figure refer gen-
erally to conv layers or multiple conv layers with associated non linearity and
normalization layers. The DySw operates in N compression rates indexed by
Ki ∈ {K1, . . . ,KN} with K1 being least compression and KN highest compres-
sion. In each compression rate Ki, only the first Ki kernels are used. Hence the
size of the compressed vector is Ki.

We considered various training losses. We tested the cross-entropy (CE)
loss alone or in combination with classical Knowledge Distillation (KD) [11] loss
where the least/uncompressed rate output supervises the outputs due to other
compression rates, as in slimmable approaches [7]. Since the DySw are struc-
turally similar to autoencoders, we also considered mean square error (MSE) as a
reconstruction loss. When the network is trained from scratch the cross-entropy
loss gives the best results but when DySw is added to a pretrained network a
combination of CE, KD and MSE works best.

3 Experimental Results

We implement DySw in six representative classes of architectures. A DySw is
placed at the end of: blocks in MSDNet [12], residual-blocks in ResNet-18 [13],
depthwise convolutions in MobileNet [14], Linear Bottlenecks in the MobileNetv2
[15], and stages in ShuffleNet and ShuffleNetv2 [16, 17]. ResNet is conventional,
MobileNet and ShuffleNet are compact and MSDNet is an anytime inference
CNN based on the DenseNet architecture family. Each DySw realises multiple
compression ratios (here we consider three: 50%, 75% and 90%).

We experimented with the CIFAR100 dataset [18] having 50K training and
10K test images of size 32 × 32 × 3 with 100 classes and successfully validated
our results on ImageNet dataset [19] classification dataset (1000 classes, 1.28M
training images and 50K validation images) for a compact model (MobileNet)
and a large one (MSDNet).

3.1 Adding Dynamic Switches doesn’t significantly impact accuracy

We trained DySw CNNs from scratch, with standard data augmentation and
provide Top-1 accuracy (model answer must be expected answer) as is standard

195

ESANN 2022 proceedings, European Symposium on Artificial Neural Networks, Computational Intelligence and
Machine Learning. Bruges (Belgium) and online event, 5-7 October 2022, i6doc.com publ., ISBN 978287587084-1.
Available from http://www.i6doc.com/en/.

Compression Rate 50% 75% 90% Uncompressed

MSDNet† 70.05 69.42 69.21 73.79

MSDNet∗ 65.26 64.82 63.71 66.01

MobileNet† 63.91 64.21 64.59 66.07

MobileNet∗ 69.56 69.41 69.0 70.2

MobileNetv2† 65.05 64.95 65.09 67.26

ShuffleNet† 69.44 69.52 67.96 69.26

ShuffleNetv2† 70.1 69.99 69.05 70.09

ResNet-18† 71.93 71.77 71.78 75.95

Table 1: Top-1 accuracy at different compression rates for DySw CNNs trained
from scratch. † stands for CIFAR-100 and ∗ for ImageNet.

Compression Rate 50% 75% 90% Un-C

CLIO [9] MobileNetv2 92 86 NA NA

Ours MobileNetv2 91.54 91.53 91.21 93

LCOT [10] ResNet18 NA 91.83 NA NA

Ours ResNet18 93.81 93.74 93.67 94.1

Table 2: Top-1 accuracy at different compression rates compared against
CLIO[9] on MobileNetv2 and LCOT[10] on ResNet18.

practice in Image Recognition tasks. Results, listed in Table 1, show that the
decrease in accuracy is limited in all configurations. For example, the largest gap
(4.58%) is observed for CIFAR-100, with 90% compression rate for the features
for MSDNet. Interestingly, the gap is smaller for ImageNet than for CIFAR-100,
suggesting our approach scales well to large images and/or data sets.

3.2 DySw is more accurate and flexible than Existing Methods

Here we present a comparison of our method to two prior methods [9, 10] that
are similar in spirit to ours. Though our caveat here is that both these methods
operate in the regime of single split with multiple rates of compression [9] or
single split with single rate of compression [10]. Despite realizing multiple splits
and multiple compression rates, our method performs either almost as good in
one criterion (of 50% compression) or mostly better in the others.

Huang et al. [9] (CLIO) perform experiments mostly on MobileNetv2 with
CIFAR-10 and ImageNet-20 (self-curated dataset of 20-random classes). We
therefore consider CIFAR-10 results for comparison as the classes chosen for
ImageNet are unavailable. We compare our method with [9] (CLIO) in the
top three rows of Table- 2. Clearly CLIO performs better than our method
at 50% feature dimension compression, but on the higher compression regimes
our method performs better. The reason for CLIO’s better accuracy could be
due to dedicated network parameters at 50% compression. Our performance

196

ESANN 2022 proceedings, European Symposium on Artificial Neural Networks, Computational Intelligence and
Machine Learning. Bruges (Belgium) and online event, 5-7 October 2022, i6doc.com publ., ISBN 978287587084-1.
Available from http://www.i6doc.com/en/.

Training Type From Scratch From Pretrained

Compression Rate 50% 75% 90% 50% 75% 90%

DySw@Block-1 72.00 71.89 71.88 71.66 71.45 69.75

DySw@Block-2 71.98 71.87 71.76 71.6 71.9 69.6

DySw@Block-3 72.00 71.80 71.89 71.57 71.69 69.6

DySw@Block-4 72.00 71.74 71.29 71.53 71.52 71.38

Table 3: Accuracy while enabling a single DySw at various locations for
ResNet18, either trained from scratch or with pretrained initialization on CI-
FAR100. DySw@Block-1 means DySw is used after Block-1.

on high compression regimes could be attributed to joint training of different
compression rates compared to per compression rate training in CLIO.

Shao et al. [10] show the effectiveness of LCOT on ResNet (we assume
it is ResNet18) using CIFAR-10 and MNIST. We consider CIFAR-10 for our
comparison as it is a more challenging dataset than MNIST and the results are
shown in the last two rows of Table 2. Our method outperforms LCOT by 2%.

3.3 Additional experiments

Using pretrained networks and training only DySW sublayers rather than
training the full network from scratch is possible. Some results are given in
Table 3 for ResNet-18. Results with other architectures are similar.

Learning one autoencoder (1AE) by compression rate decreased ac-
curacy significantly compared to our approach. Out of 21 configurations on
MSDNet, 1AE was respectively better/worse in 3/18 configurations by up to
2%/10%. 1AE would also use much more memory to store the different models.

Training a single DySw at one position where the model is split, as op-
posed to training all DySw at all possible positions, improved accuracy by up to
3%, widening the gap with other approaches. However, this requires one training
procedure for every split.

4 Conclusions

One way to realize practical deployment of CNNs in connected devices and
smart phones is through collaborative processing using cloud/edge/other devices.
This can be achieved by splitting CNNs. But feature sizes at the split points
are usually large and require feature compression for efficient transmission over
standard communication channels.

In this setting, we presented a module called Dynamic Switch (DySw) that
can switch among various feature compression rates during inference, enabling
adaptation to changing transmission constraints. We trained from scratch CNNs
with multiple DySw, hence supporting multiple slit points. Also, we investigated
augmenting DySw in pretrained CNNs by training only the DySw. We showed

197

ESANN 2022 proceedings, European Symposium on Artificial Neural Networks, Computational Intelligence and
Machine Learning. Bruges (Belgium) and online event, 5-7 October 2022, i6doc.com publ., ISBN 978287587084-1.
Available from http://www.i6doc.com/en/.

that in both cases we almost retain the performance of the CNNs with minimal
accuracy loss.

We successfully demonstrated the potential of our methods on many popular
CNN architectures like MSDNet, MobileNets, ShuffleNets and ResNet-18. One
downside of DySw is the long training time due to the multiple forward passes
per training iteration. Thus, investigating more efficient training algorithms
would be interesting for future improvement.

References

[1] S. Teerapittayanon, B. McDanel, and H.-T. Kung. Distributed deep neural networks over
the cloud, the edge and end devices. In ICDCS, 2017.

[2] H. Li, C. Hu, J. Jiang, Z. Wang, Y. Wen, and W. Zhu. Jalad: Joint accuracy-and
latency-aware deep structure decoupling for edge-cloud execution. In ICPADS, 2018.

[3] I. V. Bajić, W. Lin, and Y. Tian. Collaborative intelligence: Challenges and opportunities.
In ICASSP, 2021.

[4] A. E. Eshratifar, A. Esmaili, and M. Pedram. BottleNet: A Deep Learning Architecture
for Intelligent Mobile Cloud Computing Services. In ISLPED, 2019.

[5] Y. Dong, P. Zhao, H. Yu, C. Zhao, and S. Yang. Cdc: Classification driven compression
for bandwidth efficient edge-cloud collaborative deep learning. arXiv:2005.02177, 2020.

[6] J. Choi, H. J. Chang, T. Fischer, S. Yun, K. Lee, J. Jeong, Y. Demiris, and J. Y. Choi.
Context-aware deep feature compression for high-speed visual tracking. In CVPR, 2018.

[7] J. Yu, L. Yang, N. Xu, J. Yang, and T. Huang. Slimmable neural networks.
arXiv:1812.08928, 2018.

[8] J. Yu and T. S. Huang. Universally slimmable networks and improved training techniques.
In ICCV, 2019.

[9] J. Huang, C. Samplawski, D. Ganesan, B. Marlin, and H. Kwon. Clio: enabling automatic
compilation of deep learning pipelines across iot and cloud. In MobiCom, 2020.

[10] J. Shao, Y. Mao, and J. Zhang. Learning task-oriented communication for edge inference:
An information bottleneck approach. arXiv:2102.04170, 2021.

[11] G. Hinton, O. Vinyals, and J. Dean. Distilling the knowledge in a neural network.
arXiv:1503.02531, 2015.

[12] G. Huang, D. Chen, T. Li, F. Wu, L. Van Der Maaten, and K. Q. Weinberger. Multi-scale
dense convolutional networks for efficient prediction. arXiv:1703.09844, 2017.

[13] K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning for image recognition. In
CVPR, 2016.

[14] A. G. Howard, M. Zhu, B. Chen, D. Kalenichenko, W. Wang, T. Weyand, M. Andreetto,
and H. Adam. Mobilenets: Efficient convolutional neural networks for mobile vision
applications. arXiv:1704.04861, 2017.

[15] M. Sandler, A. Howard, M. Zhu, A. Zhmoginov, and L.-C. Chen. Mobilenetv2: Inverted
residuals and linear bottlenecks. In CVPR, 2018.

[16] X. Zhang, X. Zhou, M. Lin, and J. Sun. Shufflenet: An extremely efficient convolutional
neural network for mobile devices. In CVPR, 2018.

[17] N. Ma, X. Zhang, H.-T. Zheng, and J. Sun. Shufflenet v2: Practical guidelines for efficient
cnn architecture design. In ECCV, 2018.

[18] A. Krizhevsky, G. Hinton, et al. Learning multiple layers of features from tiny images.
2009.

[19] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei. Imagenet: A large-scale
hierarchical image database. In CVPR, 2009.

198

ESANN 2022 proceedings, European Symposium on Artificial Neural Networks, Computational Intelligence and
Machine Learning. Bruges (Belgium) and online event, 5-7 October 2022, i6doc.com publ., ISBN 978287587084-1.
Available from http://www.i6doc.com/en/.

