Eur. J. Entomol. 121: 19-28, 2024 | DOI: 10.14411/eje.2024.003

Effect of fungicide sprays on spiders in vineyardsOriginal article

Jo Marie REIFF ORCID...1, 2, Christoph HOFFMANN ORCID...2, Martin H. ENTLING ORCID...1
1 RPTU Kaiserslautern-Landau, iES Landau, Institute for Environmental Sciences, Fortstraße 7, D-76829, Landau in der Pfalz, Germany; e-mails: jo.reiff@rptu.de, martin.entling@rptu.de
2 Julius Kühn Institute, Federal Research Institute for Cultivated Plants, Institute for Plant Protection in Fruit Crops and Viticulture, Geilweilerhof, D-76833 Siebeldingen, Germany; e-mail: christoph.hoffmann@julius-kuehn.de

Spiders are the most abundant naturally occurring predators in vineyards and play a crucial role in natural pest control. However, vineyards are frequently sprayed with fungicides, which can harm spider communities. Fungus-resistant grape varieties can drastically reduce this fungicide input. The spiders on grape vines that were sprayed with a variable number of fungicide applications in 32 vineyards in different landscapes in Southwestern Germany were recorded. Vineyards received between 0 and 14 fungicidal sprays of varying toxicity (cumulated hazard quotients for honeybee up to 6). The majority of spiders benefited from a reduction in the number fungicide sprays, particularly Dictynidae, Philodromidae, Theridiidae and Thomisidae. Overall, space web weavers, orb web weavers and ambush hunters were most strongly affected by the frequency and toxicity of fungicide applications. The response of spiders to the landscape were highly variable and included both positive and negative effects of the percentage cover of woodland. In conclusion, reducing the cumulative hazard of fungicides by reducing the number of fungicide applications is a key element in fostering spiders in vineyards.

Keywords: Vitis, fungus-resistant varieties, agroecology, pesticide toxicity, Araneae, hunting strategy, taxonomic resolution

Received: July 7, 2023; Revised: December 20, 2023; Accepted: December 20, 2023; Published online: January 18, 2024  Show citation

ACS AIP APA ASA Harvard Chicago IEEE ISO690 MLA NLM Turabian Vancouver
REIFF, J.M., HOFFMANN, C., & ENTLING, M.H. (2024). Effect of fungicide sprays on spiders in vineyards. EJE121, Article 19-28. https://doi.org/10.14411/eje.2024.003
Download citation

References

  1. Attwood S.J., Maron M., House A.P.N. & Zammit C. 2008: Do arthropod assemblages display globally consistent responses to intensified agricultural land use and management? - Glob. Ecol. Biogeogr. 17: 585-599. Go to original source...
  2. Bates D., Mächler M., Bolker B. & Walker S. 2015: Fitting linear mixed-effects models using lme4. - J. Stat. Softw. 67(1): 48 pp. Go to original source...
  3. Beaumelle L., Giffard B., Tolle P., Winter S., Entling M.H., Benítez E., Zaller J.G., Auriol A., Bonnard O., Charbonnier Y., Fabreguettes O., Joubard B., Kolb S., Ostandie N., Reiff J.M., Richart-Cervera S. & Rusch A. 2023: Biodiversity conservation, ecosystem services and organic viticulture: A glass half-full. - Agric. Ecosyst. Environ. 351: 108474, 11 pp. Go to original source...
  4. Benamú M.A., Schneider M.I., González A. & Sánchez N.E. 2013: Short and long-term effects of three neurotoxic insecticides on biological and behavioural attributes of the orb-web spider Alpaida veniliae (Araneae, Araneidae): implications for IPM programs. - Ecotoxicology 22: 1155-1164. Go to original source...
  5. Bengtsson J., Ahnström J. & Weibull A.-C. 2005: The effects of organic agriculture on biodiversity and abundance: a meta-analysis: Organic agriculture, biodiversity and abundance. - J. Appl. Ecol. 42: 261-269. Go to original source...
  6. Bianchi F.J.J.A., Booij C.J.H. & Tscharntke T. 2006: Sustainable pest regulation in agricultural landscapes: a review on landscape composition, biodiversity and natural pest control. - Proc. R. Soc. (B, Biol. Sci.) 273: 1715-1727. Go to original source...
  7. Birkhofer K., Diehl E., Wolters V. & Smith H.G. 2017: Global metawebs of spider predation highlight consequences of land-use change for terrestrial predator-prey networks. In Moore J.C., De Ruiter P.C., McCann K.S. & Wolters V. (eds): Adaptive Food Webs. Cambridge University Press, Cambridge and New York, pp. 193-213. Go to original source...
  8. Blandenier G. 2009: Ballooning of spiders (Araneae) in Switzerland: General results from an eleven-year survey. - Arachnology 14: 308-316. Go to original source...
  9. Bonte D., Vandenbroecke N., Lens L. & Maelfait J.-P. 2003: Low propensity for aerial dispersal in specialist spiders from fragmented landscapes. - Proc. R. Soc. Lond. (B, Biol. Sci.) 270: 1601-1607. Go to original source...
  10. Bostanian N.J., Dondale C.D., Binns M.R. & Pitre D. 1984: Effects of pesticide use on spiders (Araneae) in Quebec apple orchards. - Can. Entomol. 116: 663-675. Go to original source...
  11. Cahenzli F., Pfiffner L. & Daniel C. 2017: Reduced crop damage by self-regulation of aphids in an ecologically enriched, insecticide-free apple orchard. - Agron. Sustain. Dev. 37: 65, 8 pp. Go to original source...
  12. Caprio E., Nervo B., Isaia M., Allegro G. & Rolando A. 2015: Organic versus conventional systems in viticulture: Comparative effects on spiders and carabids in vineyards and adjacent forests. - Agric. Syst. 136: 61-69. Go to original source...
  13. Cardoso P., Pekár S., Jocqué R. & Coddington J.A. 2011: Global patterns of guild composition and functional diversity of spiders. - PLoS ONE 6: e21710, 10 pp. Go to original source...
  14. Chaplin-Kramer R., O'Rourke M.E., Blitzer E.J. & Kremen C. 2011: A meta-analysis of crop pest and natural enemy response to landscape complexity. - Ecol. Lett. 14: 922-932. Go to original source...
  15. Clough Y., Kruess A., Kleijn D. & Tscharntke T. 2005: Spider diversity in cereal fields: comparing factors at local, landscape and regional scales. - J. Biogeogr. 32: 2007-2014. Go to original source...
  16. Clymans R., Vrancken K., Bylemans D. & Beliën T. 2015: Side effects on spiders of plant protection products commonly used during spring and autumn in Belgian pear production. - Acta Hortic. 1094: 451-456. Go to original source...
  17. Costello M.J. & Daane K.M. 1999: Abundance of spiders and insect predators on grapes in central California. - J. Arachnol. 27: 531-538.
  18. Dinter A. & Phoehling H. 1995: Side-effects of insecticides on two erigonid spider species. - Entomol. Exp. Appl. 74: 151-163. Go to original source...
  19. Drapela T., Moser D., Zaller J.G. & Frank T. 2008: Spider assemblages in winter oilseed rape affected by landscape and site factors. - Ecography 31: 254-262. Go to original source...
  20. Duque T., Chowdhury S., Scherf G., Riess K., Pekár S., Isaia M., Schäfer R.B. & Entling M.H. 2024: Chemical sensitivity of spiders form different ecosystems: Effects of phylogeny and habitat. - Pest Manag. Sci. 80: 857-865. Go to original source...
  21. Entling M.H., Stämpfli K. & Ovaskainen O. 2011: Increased propensity for aerial dispersal in disturbed habitats due to intraspecific variation and species turnover. - Oikos 120: 1099-1109. Go to original source...
  22. Fox J. & Weisberg S. 2019: An R Companion to Applied Regression. 3rd ed. SAGE Publications, Thousand Oaks, CA, 608 pp.
  23. Frank S.D., Wratten S.D., Sandhu H.S. & Shrewsbury P.M. 2007: Video analysis to determine how habitat strata affects predator diversity and predation of Epiphyas postvittana (Lepidoptera: Tortricidae) in a vineyard. - Biol. Control 41: 230-236. Go to original source...
  24. González E., Salvo A. & Valladares G. 2017: Arthropod communities and biological control in soybean fields: Forest cover at landscape scale is more influential than forest proximity. - Agric. Ecosyst. Environ. 239: 359-367. Go to original source...
  25. Herrmann J.D., Bailey D., Hofer G., Herzog F. & Schmidt-Entling M.H. 2010: Spiders associated with the meadow and tree canopies of orchards respond differently to habitat fragmentation. - Landsc. Ecol. 25: 1375-1384. Go to original source...
  26. Holland J.M., Ewald J.A. & Aebischer N.J. 2005: Field studies of pesticide effects on terrestrial invertebrates. In Liess M. et al. (eds): Effects of Pesticides in the Field. Proc. of the EU and SETAC Europe Workshop, October 2003, Le Croisic, France. Society of Environmental Toxicology and Chemistry (SETAC), Brussels, pp. 70-73.
  27. Isaia M., Bona F. & Badino G. 2006: Influence of landscape diversity and agricultural practices on spider assemblage in Italian vineyards of Langa Astigiana (northwest Italy). - Environ. Entomol. 35: 297-307. Go to original source...
  28. Judt C., Guzm G., Winter S., Zaller J.G. & Paredes D. 2019: Diverging effects of landscape factors and inter-row management on the abundance of beneficial and herbivorous arthropods in Andalusian vineyards (Spain). - Insects 10: 320, 14 pp. Go to original source...
  29. Kaczmarek M., Entling M.H. & Hoffmann C. 2023: Differentiating the effects of organic management, pesticide reduction, and landscape diversification for arthropod conservation in viticulture. - Biodiv. Conserv. 32: 2637-2653. Go to original source...
  30. Kolb S., Uzman D., Leyer I., Reineke A. & Entling M.H. 2020: Differential effects of semi-natural habitats and organic management on spiders in viticultural landscapes. - Agric. Ecosyst. Environ. 287: 106695, 10 pp. Go to original source...
  31. Landis D.A., Wratten S.D. & Gurr G.M. 2000: Habitat management to conserve natural enemies of arthropod pests in agriculture. - Annu. Rev. Entomol. 45: 175-201. Go to original source...
  32. Lewis K.A. & Tzilivakis J. 2019: Wild bee toxicity data for pesticide risk assessments. - Data 4: 98, 9 pp. Go to original source...
  33. Mansour F. & Nentwig W. 1988: Effects of agrochemical residues on four spider taxa: Laboratory methods for pesticide tests with web-building spiders. - Phytoparasitica 16: 317-325. Go to original source...
  34. Marc P., Canard A. & Ysnel F. 1999: Spiders (Araneae) useful for pest limitation and bioindication. - Agric. Ecosyst. Environ. 74: 229-273. Go to original source...
  35. Marchesini E. & Dalla Montà L. 1994: Observations on natural enemies of Lobesia botrana (Den. & Schiff.) (Lepido­ptera Tortricidae) in Venetian vineyards. - Boll. Zool. Agr. Bachic. 26: 201-230.
  36. Markó V., Bogya S., Kondorosy E. & Blommers L.H.M. 2010: Side effects of kaolin particle films on apple orchard bug, beetle and spider communities. - Int. J. Pest Manag. 56: 189-199. Go to original source...
  37. Marliac G., Mazzia C., Pasquet A., Cornic J.-F., Hedde M. & Capowiez Y. 2016: Management diversity within organic production influences epigeal spider communities in apple orchards. - Agric. Ecosyst. Environ. 216: 73-81. Go to original source...
  38. Mestre L., Schirmel J., Hetz J., Kolb S., Pfister S.C., Amato M., Sutter L., Jeanneret P., Albrecht M. & Entling M.H. 2018: Both woody and herbaceous semi-natural habitats are essential for spider overwintering in European farmland. - Agric. Ecosyst. Environ. 267: 141-146. Go to original source...
  39. Michalko R. & Pekár S. 2016: Different hunting strategies of generalist predators result in functional differences. - Oecologia 181: 1187-1197. Go to original source...
  40. Michalko R. & Birkhofer K. 2021: Habitat niches suggest that non-crop habitat types differ in quality as source habitats for Central European agrobiont spiders. - Agric. Ecosyst. Environ. 308: 107248, 9 pp. Go to original source...
  41. Michalko R. & Ko¹uliè O. 2020: The management type used in plum orchards alters the functional community structure of arthropod predators. - Int. J. Pest Manag. 66: 173-181. Go to original source...
  42. Michalko R., Pekár S., Dul'a M. & Entling M.H. 2019: Global patterns in the biocontrol efficacy of spiders: A meta analysis. - Glob. Ecol. Biogeogr. 28: 1366-1378. Go to original source...
  43. Moran M.D. 2003: Arguments for rejecting the sequential Bonferroni in ecological studies. - Oikos 100: 403-405. Go to original source...
  44. Möth S., Walzer A., Redl M., Petroviæ B., Hoffmann C. & Winter S. 2021: Unexpected effects of local management and landscape composition on predatory mites and their food resources in vineyards. - Insects 12: 180, 24 pp. Go to original source...
  45. Möth S., Richart-Cervera S., Comsa M., Herrera R.A., Hoffmann C., Kolb S., Popescu D., Reiff J.M., Rusch A., Tolle P., Walzer A. & Winter S. 2023: Local management and landscape composition affect predatory mites in European wine-growing regions. - Agric. Ecosyst. Environ. 344: 108292, 15 pp. Go to original source...
  46. Muneret L., Mitchell M., Seufert V., Aviron S., Djoudi E.A., Pétillon J., Plantegenest M., Thiéry D. & Rusch A. 2018: Evidence that organic farming promotes pest control. - Nat. Sustain. 1: 361-368. Go to original source...
  47. Munévar A., Rubio G.D. & Zurita G.A. 2018: Changes in spider diversity through the growth cycle of pine plantations in the semi-deciduous Atlantic forest: The role of prey availability and abiotic conditions. - For. Ecol. Manag. 424: 536-544. Go to original source...
  48. Nash M.A., Hoffmann A.A. & Thomson L.J. 2010: Identifying signature of chemical applications on indigenous and invasive nontarget arthropod communities in vineyards. - Ecol. Appl. 20: 1693-1703. Go to original source...
  49. Nentwig W., Blick T., Bosmans R., Gloor D., Hänggi A. & Kropf C. 2023: Araneae. Spiders of Europe. URL: https://araneae.nmbe.ch (last accessed 5 Nov. 2023).
  50. Öberg S., Mayr S. & Dauber J. 2008: Landscape effects on recolonisation patterns of spiders in arable fields. - Agric. Ecosyst. Environ. 123: 211-218. Go to original source...
  51. Oksanen J., Blanchet F.G., Friendly M., Kindt R., Legendre P., McGlinn D., Minchin P.R., O'Hara R.B., Simpson G.I., Solymos P., Stevens M.H.H., Szoecs E. & Wagner H. 2018: Vegan: Community Ecology Package. URL: https:// CRAN.R-project.org/package=vegan
  52. Papura D., Roux P., Joubard B., Razafimbola L., Fabreguettes O., Delbac L. & Rusch A. 2020: Predation of grape berry moths by harvestmen depends on landscape composition. - Biol. Control 150: 104358, 7 pp. Go to original source...
  53. Pekár S. 1999: Foraging mode: a factor affecting the susceptibility of spiders (Araneae) to insecticide applications. - Pestic. Sci. 55: 1077-1082. Go to original source...
  54. Pekár S. 2002: Susceptibility of the spider Theridion impressum to 17 pesticides. - Anz. Schädlingsk. 75: 51-55. Go to original source...
  55. Pekár S. 2012: Spiders (Araneae) in the pesticide world: an ecotoxicological review: Spiders and pesticides. - Pest Manag. Sci. 68: 1438-1446. Go to original source...
  56. Pekár S. & Haddad C.R. 2005: Can agrobiont spiders (Araneae) avoid a surface with pesticide residues? - Pest Manag. Sci. 61: 1179-1185. Go to original source...
  57. Pennington T., Kraus C., Alakina E., Entling M.H. & Hoffmann C. 2017: Minimal pruning and reduced plant protection promote predatory mites in grapevine. - Insects 8: 86, 9 pp. Go to original source...
  58. Pennington T., Reiff J.M., Theiss K., Entling M.H. & Hoffmann C. 2018: Reduced fungicide applications improve insect pest control in grapevine. - BioControl 63: 687-695. Go to original source...
  59. Pennington T., Kolb S., Kaiser J., Hoffmann C. & Entling M.H. 2019: Does minimal pruning and reduced fungicide use impact spiders in the grapevine canopy? - J. Arachnol. 47: 381-384. Go to original source...
  60. Pertot I., Caffi T., Rossi V., Mugnai L., Hoffmann C., Grando M.S., Gary C., Lafond D., Duso C., Thiery D., Mazzoni V. & Anfora G. 2017: A critical review of plant protection tools for reducing pesticide use on grapevine and new perspectives for the implementation of IPM in viticulture. - Crop Prot. 97: 70-84. Go to original source...
  61. Picchi M.S., Bocci G., Petacchi R. & Entling M.H. 2016: Effects of local and landscape factors on spiders and olive fruit flies. - Agric. Ecosyst. Environ. 222: 138-147. Go to original source...
  62. Picchi M.S., Bocci G., Petacchi R. & Entling M.H. 2020: Taxonomic and functional differentiation of spiders in habitats in a traditional olive producing landscape in Italy. - Eur. J. Entomol. 117: 18-26. Go to original source...
  63. QGIS Development Team 2016: QGIS Geographic System. Version 2.18.9. Open Source Geospatial Found. Proj. URL: http://qgis.osgeo.org
  64. R Development Core Team 2015: R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria.
  65. Reiff J.M., Ehringer M., Hoffmann C. & Entling M.H. 2021a: Fungicide reduction favors the control of phytophagous mites under both organic and conventional viticulture. - Agric. Ecosyst. Environ. 305: 107172, 8 pp. Go to original source...
  66. Reiff J.M., Kolb S., Entling M.H., Herndl T., Möth S., Walzer A., Kropf M., Hoffmann C. & Winter S. 2021b: Organic farming and cover-crop management reduce pest predation in Austrian vineyards. - Insects 12: 220, 15 pp. Go to original source...
  67. Reiff J.M., Sudarsan K., Hoffmann C. & Entling M.H. 2023: Arthropods on grapes benefit more from fungicide reduction than from organic farming. - Pest Manag. Sci. 79: 3271-3279. Go to original source...
  68. Rösch V., Hafner G., Reiff J.M. & Entling M.H. 2023: Increase in breeding bird abundance and diversity with semi-natural habitat in vineyard landscapes. - PLoS ONE 18(8): e0284254, 14 pp. Go to original source...
  69. Samu F. & Vollrath F. 1992: Spider orb web as bioassay for pesticide side effects. - Entomol. Exp. Appl. 62: 117-124. Go to original source...
  70. Samu F., Matthews G.A., Lake D. & Vollrath F. 1992: Spider webs are efficient collectors of agrochemical spray. - Pestic. Sci. 36: 47-51. Go to original source...
  71. Schirmel J., Thiele J., Entling M.H. & Buchholz S. 2016: Trait composition and functional diversity of spiders and carabids in linear landscape elements. - Agric. Ecosyst. Environ. 235: 318-328. Go to original source...
  72. Schmidt M.H., Thies C., Nentwig W. & Tscharntke T. 2008: Contrasting responses of arable spiders to the landscape matrix at different spatial scales. - J. Biogeogr. 35: 157-166. Go to original source...
  73. Southwood T.R. 1977: Habitat, the templet for ecological strategies? - J. Anim. Ecol. 46: 337-365. Go to original source...
  74. Thiollet-Scholtus M., Muller A., Abidon C., Grignion J., Keichinger O., Koller R., Langenfeld A., Ley L., Nassr N., Rabolin-Meinrad C. & Wohlfahrt J. 2021: Multidimensional assessment demonstrates sustainability of new low-input viticulture systems in north-eastern France. - Eur. J. Agron. 123: 126210, 13 pp. Go to original source...
  75. Thomson L.J. & Hoffmann A.A. 2006: Field validation of laboratory-derived IOBC toxicity ratings for natural enemies in commercial vineyards. - Biol. Control 39: 507-515. Go to original source...
  76. Thomson L.J., McKenzie J., Sharley D.J., Nash M.A., Tsitsilas A. & Hoffmann A.A. 2010: Effect of woody vegetation at the landscape scale on the abundance of natural enemies in Australian vineyards. - Biol. Control 54: 248-254. Go to original source...
  77. Veres A., Petit S., Conord C. & Lavigne C. 2013: Does landscape composition affect pest abundance and their control by natural enemies? A review. - Agric. Ecosyst. Environ. 166: 110-117. Go to original source...
  78. Wersebeckmann V., Warzecha D., Entling M.H. & Leyer I. 2023: Contrasting effects of vineyard type, soil and landscape factors on ground- versus above-ground-nesting bees. - J. Appl. Ecol. 60: 601-613. Go to original source...
  79. Wickham H. 2023: modelr. Modelling Functions that Work with the Pipe. URL: https://modelr.tidyverse.org
  80. Wilson H., Miles A.F., Daane K.M. & Altieri M.A. 2015: Landscape diversity and crop vigor influence biological control of the western grape leafhopper (E. elegantula Osborn) in vineyards. - PLoS ONE 10: e0141752, 19 pp. Go to original source...
  81. Wisniewska J. & Prokopy R.J. 1997: Pesticide effect on faunal composition, abundance, and body length of spiders (Araneae) in apple orchards. - Environ. Entomol. 26: 763-776. Go to original source...
  82. Zuur A., Ieno E.N., Walker N., Seveliev A.A. & Smith G.M. 2009: Mixed Effects Models and Extensions in Ecology with R. Statistics for Biology and Health. Springer, New York, NY, 584 pp. Go to original source...

This is an open access article distributed under the terms of the Creative Commons Attribution 4.0 International License (CC BY 4.0), which permits use, distribution, and reproduction in any medium, provided the original publication is properly cited. No use, distribution or reproduction is permitted which does not comply with these terms.