Eur. J. Entomol. 120: 137-148, 2023 | DOI: 10.14411/eje.2023.017

Contribution of the public to the modelling of the distributions of species: Occurrence and current and potential distribution of the ant Manica rubida (Hymenoptera: Formicidae)Original article

Patrick KRAPF ORCID...
Molecular Ecology Group, Department of Ecology, Universität Innsbruck, Technikerstr. 25, 6020 Innsbruck, Austria; e-mail: patrick.krapf@uibk.ac.at

Maps and models of the distributions of animals and plants are important for assessing their current and future status. Such models rely on information on the environment and occurrence of species. While data on the environment are often easily gathered that on the occurrence of species is often tedious and expensive to collect. An easy way to gather data on species occurrences is to use online platforms such as GBIF or iNaturalist, which rely on the public. This data can be used to produce maps and develop models of the distributions of various animals, such as ants. Even though there are a few in depth studies on the distributions of ant species, knowledge of the distribution and status of many species is lacking. One such species is the widespread ant Manica rubida, which is currently not included in the international Red List. Here, data on the occurrence of M. rubida recorded in online platforms, literature and collected during a field survey were used to develop a map of its distribution and a species model, in order to evaluate its current status. A total of 611 occurrences were found and indicate that this species mainly occurs in the European Alps and other Eurasian mountain ranges. Records of most occurrences were obtained from online platforms and the number increased significantly over the last two decades and indicate this species occurs over an altitudinal range of 3000 m. The species model revealed that there are potential areas of suitable habitat for M. rubida in the Pyrenees, European Uplands, Pindus Mountains, Balkan Mountains and Pontic mountains. Currently, M. rubida does not seem to be threatened by climate change, but it is recommended that the monitoring of its distribution should be continued. This study reveals that data from online platforms can provide the information necessary for developing species models, which can be used to assess the current status and estimate the potential effect of climate change on a species and plan conservation strategies.

Keywords: SDM, species distribution map, European Alps, GBIF, iNaturalist, niche modelling, citizen science

Received: November 18, 2022; Revised: March 10, 2023; Accepted: March 10, 2023; Published online: May 9, 2023  Show citation

ACS AIP APA ASA Harvard Chicago IEEE ISO690 MLA NLM Turabian Vancouver
KRAPF, P. (2023). Contribution of the public to the modelling of the distributions of species: Occurrence and current and potential distribution of the ant Manica rubida (Hymenoptera: Formicidae). EJE120, Article 137-148. https://doi.org/10.14411/eje.2023.017
Download citation

References

  1. Agosti D., Majer J., Alonso L. & Schultz T. 2000: Ants: Standard Methods for Measuring and Monitoring Biodiversity. Biological diversity handbook series, Smithsonian Institution Press, Washington, D.C., 269 pp
  2. Alonso L.E. 2009: Ant conservation: Current status and a call to action. In Lach L., Parr C. & Abbott K. (eds): Ant Ecology.Oxford University Press, Oxford, pp. 59-74. Go to original source...
  3. Araújo M.B., Thuiller W. & Pearson R.G. 2006: Climate warming and the decline of amphibians and reptiles in Europe. - J. Biogeogr. 33: 1712-1728. Go to original source...
  4. Báthori F., Jégh T. & Csõsz S. 2022: Formerly considered rare, the ant species Cryptopone ochracea (Mayr, 1855) can be commonly detected using citizen-science tools. - Biodivers. Data J. 10: e83117, 13 pp. Go to original source...
  5. Bertelsmeier C. 2021: Globalization and the anthropogenic spread of invasive social insects. - Curr. Opin. Insect Sci. 46: 16-23. Go to original source...
  6. Biber M.F., Voskamp A., Niamir A., Hickler T. & Hof C. 2020: A comparison of macroecological and stacked species distribution models to predict future global terrestrial vertebrate richness. - J. Biogeogr. 47: 114-129. Go to original source...
  7. Bivand R. & Lewin-Koh N. 2022: maptools: Tools for Handling Spatial Objects. Springer, New York, 82 pp.
  8. Bivand R.S., Pebesma E. & Gomez-Rubio V. 2013: Applied Spatial Data Analysis with R. 2nd ed. Springer, New York, xviii + 405 pp. Go to original source...
  9. Bivand R., Keitt T. & Rowlingson B. 2022: rgdal: Bindings for the 'Geospatial' Data Abstraction Library. URL: https://CRAN.R-project.org/package=rgdal.
  10. Bonney R., Phillips T.B., Ballard H.L. & Enck J.W. 2015: Can citizen science enhance public understanding of science? - Public Underst. Sci. 25: 2-16. Go to original source...
  11. Callaghan C.T., Watson J.E.M., Lyons M.B., Cornwell W.K. & Fuller R.A. 2021: Conservation birding: A quantitative conceptual framework for prioritizing citizen science observations. - Biol. Conserv. 253: 108912, 6 pp. Go to original source...
  12. Choe H., Thorne J.H. & Seo C. 2016: Mapping national plant biodiversity patterns in South Korea with the MARS species distribution model. - PLoS ONE 11: e0149511, 15 pp. Go to original source...
  13. Crall A.W., Jarnevich C.S., Young N.E., Panke B.J., Renz M. & Stohlgren T.J. 2015: Citizen science contributes to our knowledge of invasive plant species distributions. - Biol. Invas. 17: 2415-2427. Go to original source...
  14. Di Cecco G.J., Barve V., Belitz M.W., Stucky B.J., Guralnick R.P. & Hurlbert A.H. 2021: Observing the observers: How participants contribute data to iNaturalist and implications for biodiversity science. - BioScience 71: 1179-1188. Go to original source...
  15. Elith J. & Leathwick J.R. 2009: Species distribution models: ecological explanation and prediction across space and zime. - Annu. Rev. Ecol. Evol. Syst. 40: 677-697. Go to original source...
  16. Elith J., Phillips S.J., Hastie T., Dudik M., Chee Y.E. & Yates C.J. 2011: A statistical explanation of MaxEnt for ecologists. - Divers. Distrib. 17: 43-57. Go to original source...
  17. Ferraz K.M.P.M.d.B., Morato R.G., Bovo A.A.A., da Costa C.O.R., Ribeiro Y.G.G., de Paula R.C., Desbiez A.L.J., Angelieri C.S.C. & Traylor-Holzer K. 2021: Bridging the gap between researchers, conservation planners, and decision makers to improve species conservation decision-making. - Conserv. Sci. Pract. 3: e330, 11 pp. Go to original source...
  18. Fick S.E. & Hijmans R.J. 2017: WorldClim 2: new 1-km spatial resolution climate surfaces for global land areas. - Int. J. Climatol. 37: 4302-4315. Go to original source...
  19. Flucher S.M., Krapf P., Arthofer W., Suarez A.V., Crozier R.H., Steiner F.M. & Schlick-Steiner B.C. 2021: Effect of social structure and introduction history on genetic diversity and differentiation. - Mol. Ecol. 30: 2511-2527. Go to original source...
  20. Foden W.B., Young B.E., Akçakaya H.R., Garcia R.A., Hoffmann A.A., Stein B.A., Thomas C.D., Wheatley C.J., Bickford D., Carr J.A. et al. 2019: Climate change vulnerability assessment of species. - WIREs Climate Change 10: e551, 36 pp. Go to original source...
  21. Fowler H.G., Pagani M.I., Aulino da Silva O., Forti L.C., Pereira da Silva V. & Luis de Vasconcelos H. 1989: A pest is a pest is a pest? The dilemma of neotropical leaf-cutting ants: keystone taxa of natural ecosystems. - Environ. Manag. 13: 671-675. Go to original source...
  22. Franklin J. 2009: Mapping Species Distributions: Spatial Inference and Prediction. Cambridge University Press, Cambridge, 320 pp. Go to original source...
  23. Geisen S., Briones M.J.I., Gan H., Behan-Pelletier V.M., Friman V.-P., de Groot G.A., Hannula S.E., Lindo Z., Philippot L., Tiunov A.V. et al. 2019: A methodological framework to embrace soil biodiversity. - Soil Biol. Biochem. 136: 107536, 15 pp. Go to original source...
  24. Grabherr G., Gottfried M. & Pauli H. 2010: Climate change impacts in Alpine environments. - Geogr. Compass 4: 1133-1153. Go to original source...
  25. Guénard B., Weiser M.D., Gómez K., Narula N. & Economo E.P. 2017: The Global Ant Biodiversity Informatics (GABI) database: synthesizing data on the geographic distribution of ant species (Hymenoptera: Formicidae). - Myrmecol. News 24: 83-89.
  26. Guillera-Arroita G., Lahoz-Monfort J.J., Elith J., Gordon A., Kujala H., Lentini P.E., McCarthy M.A., Tingley R. & Wintle B.A. 2015: Is my species distribution model fit for purpose? Matching data and models to applications. - Glob. Ecol. Biogeogr. 24: 276-292. Go to original source...
  27. Hämmerle A.I., Wessely J., Baatar U.-O., Essl F., Moser D., Jiménez-Alfaro B., Jandt U., Agrillo E., Stanèiæ Z., Dirnböck T. et al. 2018: A new method for jointly assessing effects of climate change and nitrogen deposition on habitats. - Biol. Conserv. 228: 52-61. Go to original source...
  28. Hartig F. 2022: DHARMa: Residual Diagnostics for Hierarchical (Multi-Level / Mixed) Regression Models. URL: https://cran.r-project.org/web/packages/DHARMa/vignettes/DHARMa.html
  29. Hijmans R.J. 2020: raster: Geographic Data Analysis and Modeling. R Package Version 3.1-5. URL: https://cran.r-project.org/web/packages/raster/index.html
  30. Hochachka W.M., Fink D., Hutchinson R.A., Sheldon D., Wong W.-K. & Kelling S. 2012: Data-intensive science applied to broad-scale citizen science. - Trends Ecol. Evol. 27: 130-137. Go to original source...
  31. IPCC 2013: Summary for policymakers. In Stocker T.F., Qin D., Plattner G.-K., Tignor M., Allen S.K., Boschung J., Nauels A., Xia Y., Bex V. & Midgley P.M. (eds): Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, pp. 3-29.
  32. IPCC 2021: Summary for policymakers. In Masson-Delmotte V., Zhai P., Pirani A., Connors S.L., Péan C., Berger S., Caud N., Chen Y., Goldfarb L., Gomis M.I. et al. (eds): Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, pp. 3-31.
  33. IPCC 2022: Summary for policymakers. In Masson-Delmotte V., Pörtner H.-O., Roberts D.C., Poloczanska E.S., Mintenbeck K., Tignor M., Alegría A., Craig M., Langsdorf S., Löschke S. et al. (eds): Climate Change 2022: Impacts, Adaptation, and Vulnerability. Contribution of Working Group II to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, pp. 3-33.
  34. Janicki J., Narula N., Ziegler M., Guénard B. & Economo E.P. 2016: Visualizing and interacting with large-volume biodiversity data using client-server web-mapping applications: The design and implementation of antmaps.org. - Ecol. Inform. 32: 185-193. Go to original source...
  35. Kass J.M., Vilela B., Aiello-Lammens M.E., Muscarella R., Merow C. & Anderson R.P. 2018: Wallace: A flexible platform for reproducible modeling of species niches and distributions built for community expansion. - Meth. Ecol. Evol. 9: 1151-1156. Go to original source...
  36. Kass J.M., Anderson R.P., Espinosa-Lucas A., Juárez-Jaimes V., Martínez-Salas E., Botello F., Tavera G., Flores-Martínez J.J. & Sánchez-Cordero V. 2020: Biotic predictors with phenological information improve range estimates for migrating monarch butterflies in Mexico. - Ecography 43: 341-352. Go to original source...
  37. Krapf P., Arthofer W., Ayasse M., Steiner F.M. & Schlick-Steiner B.C. 2023: Global change may make hostile - Higher ambient temperature and nitrogen availability increase ant aggression. - Sci. Total Environ. 861: 160443, 14 pp. Go to original source...
  38. Kuhn M. 2022: caret: Classification and Regression Training. R Package Version 6.0-86. URL: https://cran.r-project.org/web/packages/caret/index.html
  39. Lamprecht A., Semenchuk P.R., Steinbauer K., Winkler M. & Pauli H. 2018: Climate change leads to accelerated transformation of high-elevation vegetation in the central Alps. - New Phytologist 220: 447-459. Go to original source...
  40. Marcenò C., Padullés Cubino J., Chytrý M., Genduso E., Salemi D., La Rosa A., Gristina A.S., Agrillo E., Bonari G., Giusso del Galdo G. et al. 2021: Facebook groups as citizen science tools for plant species monitoring. - J. Appl. Ecol. 58: 2018-2028. Go to original source...
  41. Marty C. & Meister R. 2012: Long-term snow and weather observations at Weissfluhjoch and its relation to other high-altitude observatories in the Alps. - Theor. Appl. Climatol. 110: 573-583. Go to original source...
  42. Maund P.R., Irvine K.N., Lawson B., Steadman J., Risely K., Cunningham A.A. & Davies Z.G. 2020: What motivates the masses: Understanding why people contribute to conservation citizen science projects. - Biol. Conserv. 246: 108587, 10 pp. Go to original source...
  43. McKinley D.C., Miller-Rushing A.J., Ballard H.L., Bonney R., Brown H., Cook-Patton S.C., Evans D.M., French R.A., Parrish J.K., Phillips T.B. et al. 2017: Citizen science can improve conservation science, natural resource management, and environmental protection. - Biol. Conserv. 208: 15-28. Go to original source...
  44. Menzel F. & Feldmeyer B. 2021: How does climate change affect social insects? - Curr. Opin. Insect Sci. 46: 10-15. Go to original source...
  45. Merow C., Smith M.J. & Silander J.A. 2013: A practical guide to MaxEnt for modeling species' distributions: what it does, and why inputs and settings matter. - Ecography 36: 1058-1069. Go to original source...
  46. Muscarella R., Galante P.J., Soley-Guardia M., Boria R.A., Kass J.M., Uriarte M. & Anderson R.P. 2014: ENMeval: An R package for conducting spatially independent evaluations and estimating optimal model complexity for MAXENT ecological niche models. - Meth. Ecol. Evol. 5: 1198-1205. Go to original source...
  47. Ossó A., Allan R.P., Hawkins E., Shaffrey L. & Maraun D. 2022: Emerging new climate extremes over Europe. - Clim. Dynam. 58: 487-501. Go to original source...
  48. Parr C.L. & Bishop T.R. 2022: The response of ants to climate change. - Glob. Change Biol. 28: 3188-3205. Go to original source...
  49. Peterson B.G. & Carl P. 2022: Performance Analytics: Econometric Tools for Performance and Risk Analysis. Springer, New York, URL: https://cran.r-project.org/web/packages/PerformanceAnalytics/index.html
  50. Philipps S. 2021: maxnet: Fitting 'Maxent' Species Distribution Models with 'glmnet'. Springer, New York, URL: https://cran.r-project.org/web/packages/maxnet/index.html
  51. Phillips S.J. & Dudik M. 2008: Modeling of species distributions with Maxent: new extensions and a comprehensive evaluation. - Ecography 31: 161-175. Go to original source...
  52. Pohl A., Ziemen V. & Witte V. 2018: Mass occurrence and dominant behavior of the European ant species Formica fuscocinerea (Forel). - J. Insect. Behav. 31: 12-28. Go to original source...
  53. Queiroz A.C.M., Wilker I., Lasmar C.J., Mousinho E., Ribas C.R. & van den Berg E. 2021: No matter where you are, ants (Hymenoptera: Formicidae) get attention when it is warm. - Myrmecol. News 31: 71-83.
  54. R Core Team 2022: R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna. URL: https://www.r-project.org/
  55. Rabitsch W.B., Dietrich C.O. & Glaser F. 1999: Rote Liste der Ameisen Kärntens (Insecta: Hymenoptera: Formicidae). In Rottenburg T., Wieser C., Mildner P. & Holzinger W.E. (eds): Rote Listen gefährdeter Tiere Kärntens 15. Naturschutz in Kärnten, Klagenfurt, pp. 229-238.
  56. Raes N. & ter Steege H. 2007: A Null-Model for significance testing of presence-only species distribution models. - Ecography 30: 727-736. Go to original source...
  57. Rogora M., Frate L., Carranza M.L., Freppaz M., Stanisci A., Bertani I., Bottarin R., Brambilla A., Canullo R., Carbognani M. et al. 2018: Assessment of climate change effects on mountain ecosystems through a cross-site analysis in the Alps and Apennines. - Sci. Total Environ. 624: 1429-1442. Go to original source...
  58. Román-Palacios C. & Wiens J.J. 2020: Recent responses to climate change reveal the drivers of species extinction and survival. - Proc. Natl. Acad. Sci. U.S.A. 117: 4211-4217. Go to original source...
  59. RStudio Team 2022: RStudio: Integrated Development for R. RStudio, Inc., Boston, MA, URL: https://posit.co/products/open-source/rstudio/
  60. Schlick-Steiner B.C., Steiner F.M. & Schödl S. 2003: Ameisen (Hymenoptera: Formicidae). Eine Rote Liste der in Niederösterreich gefährdeten Arten. Amt der NÖ Landesregierung, St. Pölten, 75 pp.
  61. Seifert B. 2011: Rote Liste und Gesamtartenliste der Ameisen (Hymenoptera: Formicidae) Deutschlands. In Binot-Hafke M., Balzer S., Becker N., Gruttke H., Haupt H., Hofbauer N., Ludwig G., Matzke-Hajek G. & Strauch M. (eds): Rote Liste gefährdeter Tiere, Pflanzen und Pilze Deutschlands. Band 1: Wirbeltiere, Naturschutz und Biologische Vielfalt, Münster, pp. 208-212.
  62. Seifert B. 2018: The Ants of Central and North Europe. Lutra Verlags- und Vertriebsgesellschaft, Boxberg, 407 pp.
  63. Souza J.L.P., Baccaro F.B., Landeiro V.L., Franklin E., Magnusson W.E., Pequeno P.A.C.L. & Fernandes I.O. 2016: Taxonomic sufficiency and indicator taxa reduce sampling costs and increase monitoring effectiveness for ants. - Diversity Distrib. 22: 111-122. Go to original source...
  64. Steiner F.M., Schlick-Steiner B.C., Vanderwal J., Reuther K.D., Christian E., Stauffer C., Suarez A.V., Williams S.E. & Crozier R.H. 2008: Combined modelling of distribution and niche in invasion biology: a case study of two invasive Tetramorium ant species. - Diversity Distrib. 15: 538-545. Go to original source...
  65. Toreti A., Bavera D., Acosta Navarro J., Cammalleri C., De Jager A., Di Ciollo C., Hrast Essenfelder A., Maetens W., Magni D., Masante D. et al. 2022: Drought in Europe August 2022. Publications Office of the European Union, Luxembourg, 24 pp.
  66. Underwood E.C. & Fisher B.L. 2006: The role of ants in conservation monitoring: If, when, and how. - Biol. Conserv. 132: 166-182. Go to original source...
  67. Unger S., Rollins M., Tietz A. & Dumais H. 2021: iNaturalist as an engaging tool for identifying organisms in outdoor activities. - J. Biol. Educ. 55: 537-547. Go to original source...
  68. van der Wal R., Anderson H., Robinson A., Sharma N., Mellish C., Roberts S., Darvill B. & Siddharthan A. 2015: Mapping species distributions: A comparison of skilled naturalist and lay citizen science recording. - Ambio 44: 584-600. Go to original source...
  69. Vitasse Y., Ursenbacher S., Klein G., Bohnenstengel T., Chittaro Y., Delestrade A., Monnerat C., Rebetez M., Rixen C., Strebel N. et al. 2021: Phenological and elevational shifts of plants, animals and fungi under climate change in the European Alps. - Biol. Rev. 96: 1816-1835. Go to original source...
  70. Wagner H.C. 2014: Die Ameisen Kärntens. Verbreitung, Biologie, Ökologie und Gefährdung. Naturwissenschaftlicher Verein für Kärnten, Klagenfurt, 446 pp.
  71. Wäldchen J., Rzanny M., Seeland M. & Mäder P. 2018: Automated plant species identification - Trends and future directions. - PLOS Computat. Biol. 14: e1005993, 19 pp. Go to original source...
  72. Wheeler G.C. & Wheeler J. 1970: The natural history of Manica (Hymenoptera: Formicidae). - J. Kansas Entomol. Soc. 43: 129-162.
  73. Wickham H. 2016: ggplot2: Elegant Graphics for Data Analysis. Springer, New York, 213 pp. Go to original source...
  74. Wickham H., François R., Henry L. & Müller K. 2022: dplyr: A Grammar of Data Manipulation. Springer, New York, URL: https://dplyr.tidyverse.org/reference/dplyr-package.html
  75. Witte V. 2014: Invasive Ameisen: Superkolonien - super Dominanz. In Rundgespräche der Kommission für Ökologie (ed.): Soziale Insekten in einer sich wandelnden Welt. Dr. Friedrich Pfeil, München, pp. 125-134.
  76. Zhang Y.M., Vitone T.R., Storer C.G., Payton A.C., Dunn R.R., Hulcr J., McDaniel S.F. & Lucky A. 2019: From pavement to population genomics: Characterizing a long-established non-native ant in North America through citizen science and ddRADseq. - Front. Ecol. Evol. 7: 453, 10 pp. Go to original source...
  77. Zimmermann N.E., Edwards Jr T.C., Graham C.H., Pearman P.B. & Svenning J.-C. 2010: New trends in species distribution modelling. - Ecography 33: 985-989. Go to original source...
  78. Zulian V., Miller D.A.W. & Ferraz G. 2021: Integrating citizen-science and planned-survey data improves species distribution estimates. - Divers. Distrib. 27: 2498-2509. Go to original source...

This is an open access article distributed under the terms of the Creative Commons Attribution 4.0 International License (CC BY 4.0), which permits use, distribution, and reproduction in any medium, provided the original publication is properly cited. No use, distribution or reproduction is permitted which does not comply with these terms.